Skip to content
Related Articles

Related Articles

Improve Article
Replace every node with depth in N-ary Generic Tree
  • Difficulty Level : Medium
  • Last Updated : 11 Jun, 2021

Given an array arr[] representing a Generic(N-ary) tree. The task is to replace the node data with the depth(level) of the node. Assume level of root to be 0.
 

Array Representation: The N-ary tree is serialized in the array arr[] using level order traversal as described below: 
 

  • The input is given as a level order traversal of N-ary Tree.
  • The first element of the array arr[] is the root node.
  • Then, followed by a number N, which denotes the number of children of the previous node. Value zero denotes Null Node.

Examples: 
 

Input: arr[] = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 } 
Below is the N-ary Tree of the above array level order traversal: 
 



Output: 
Below is the representation of the above output: 
 

Input: arr[] = {1, 3, 2, 3, 4, 2, 5, 6, 0, 0, 2, 8, 9} 
Below is the N-ary Tree of the above array level order traversal: 
 

Output: 
Below is the representation of the above output: 
 

 

 

Approach: 
 

  • Traverse the tree starting from root.
  • While traversing pass depth of node as a parameter.
  • Track depth by passing it as 0 for root and (1 + current level) for children.

Below is the implementation of the above approach:
 

CPP




// C++ program to implement node with
// it's depth value
#include <bits/stdc++.h>
using namespace std;
 
// Treenode class using template
template <typename T>
class TreeNode {
public:
    // To store node value
    T data;
 
    // Pointer to TreeNode to store
    // the child node
    vector<TreeNode<T>*> children;
 
    // Constructor to assign data
    // to node
    TreeNode(T data)
    {
        this->data = data;
    }
 
    // Destructors to delete a node
    ~TreeNode()
    {
        for (int i = 0;
             i < children.size(); i++) {
            delete children[i];
        }
    }
};
 
// Function to take input level wise
// i.e., in level order traversal
TreeNode<int>* takeInputLevelWise(int arr[])
{
    int idx = 1;
 
    // Input root
    int rootData = arr[0];
 
    // Initialize tree with a root node
    TreeNode<int>* root
        = new TreeNode<int>(rootData);
 
    // Intialise queue for appending
    // node as a child of parent in
    // N-ary tree
    queue<TreeNode<int>*> pendingNodes;
 
    // Push the root node in queue
    pendingNodes.push(root);
 
    // While queue is not empty append
    // child to the root
    while (pendingNodes.size() != 0) {
 
        // Take the first node
        TreeNode<int>* front
            = pendingNodes.front();
        pendingNodes.pop();
 
        // Input number of child
        int numChild = arr[idx];
        idx++;
 
        for (int i = 0; i < numChild; i++) {
 
            int childData = arr[idx];
            idx++;
 
            // Make child Node
            TreeNode<int>* child
                = new TreeNode<int>(childData);
 
            // Append child node to
            // it's parent
            front->children.push_back(child);
            pendingNodes.push(child);
        }
    }
    return root;
}
 
// Function to print each node data
// in level order
void printLevelATNewLine(TreeNode<int>* root)
{
    queue<TreeNode<int>*> q;
    q.push(root);
    q.push(NULL);
    while (!q.empty()) {
 
        TreeNode<int>* first = q.front();
        q.pop();
 
        if (first == NULL) {
            if (q.empty()) {
                break;
            }
            cout << endl;
            q.push(NULL);
            continue;
        }
 
        cout << first->data << " ";
 
        for (int i = 0;
             i < first->children.size(); i++) {
            q.push(first->children[i]);
        }
    }
}
 
// Helper function to replace the
// node data with their level value
void helper(TreeNode<int>* root,
            int depth)
{
 
    // Replace the node data with
    // it's depth
    root->data = depth;
    for (int i = 0;
         i < root->children.size(); i++) {
 
        helper(root->children[i], depth + 1);
    }
}
 
// Function to replace with depth
void replaceWithDepthValue(TreeNode<int>* root)
{
    helper(root, 0);
}
 
// Driver Code
int main()
{
 
    // Given level order traversal in
    // the array arr[]
    int arr[] = { 10, 3, 20, 30, 40, 2,
                  40, 50, 0, 0, 0, 0 };
 
    // Intialise Tree
    TreeNode<int>* root;
    root = takeInputLevelWise(arr);
 
    // Function call to replace with
    // depth value
    replaceWithDepthValue(root);
 
    // Function call to print
    // in level order
    printLevelATNewLine(root);
    return 0;
}


Output: 

0 
1 1 1 
2 2

 

Time Complexity: O(N), where N is the number of nodes in Tree. 
Auxiliary Space: O(N), where N is the number of nodes in Tree.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes 




My Personal Notes arrow_drop_up
Recommended Articles
Page :