Remainder Evaluation
Given two positive integers Num1 and Num2, the task is to find the remainder when Num1 is divided by Num2.
Examples:
Input: Num1 = 11, Num2 = 3
Output: 2
Explanation: 3) 11 (3
– 9
———
2 -> Remainder
———-Input: Num1 = 15, Num2 = 3
Output: 0
Approach 1: The problem can be solved by using the modulus operator.
- Modulus operator returns the remainder, if we write a % b, it returns the remainder when a is divided by b where b != 0. If b = 0, then it gives Runtime Error,
- Math error in C++, (Math error: Attempted to divide by Zero)
- ZeroDivisionError in Python, [ZeroDivisionError: integer division or modulo by zero]
- ArithmeticException in Java [ArithmeticException: / by zero]
Below is the implementation of the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the remainder // when Num1 is divided by Num2 int solve( int Num1, int Num2) { return Num1 % Num2; } // Driver Code int main() { int Num1 = 11; int Num2 = 3; // Function Call cout << solve(Num1, Num2) << endl; return 0; } |
Java
// Java code to implement the approach import java.io.*; class GFG { // Function to find the remainder // when Num1 is divided by Num2 public static int solve( int Num1, int Num2) { return Num1 % Num2; } // Driver Code public static void main(String[] args) { int Num1 = 11 ; int Num2 = 3 ; // Function Call System.out.println(solve(Num1, Num2)); } } // This code is contributed by Rohit Pradhan |
Python3
# Python3 code to implement the approach # Function to find the remainder # when Num1 is divided by Num2 def solve(Num1, Num2): return Num1 % Num2 # Driver Code Num1 = 11 Num2 = 3 # Function Call print (solve(Num1, Num2)) # This code is contributed by akashish__ |
C#
// C# program to implement // the above approach using System; class GFG { // Function to find the remainder // when Num1 is divided by Num2 public static int solve( int Num1, int Num2) { return Num1 % Num2; } // Driver Code public static void Main() { int Num1 = 11; int Num2 = 3; // Function Call Console.Write(solve(Num1, Num2)); } } // This code is contributed by sanjoy_62. |
Javascript
<script> // JS code to implement the approach // Function to find the remainder // when Num1 is divided by Num2 function solve(Num1, Num2) { return Num1 % Num2; } // Driver Code let Num1 = 11; let Num2 = 3; // Function Call document.write(solve(Num1, Num2)); // This code is contributed by lokeshpotta20. </script> |
2
Time Complexity: O(1)
Auxiliary Space: O(1)
Approach 2: Without using the modulus (%) operator
In this approach, we will consider Num2 as the divider and Num1 as the Dividend. so Quotient will be Num1 / Num2. then we will subtract (Quotient * Num2) from Num1, and this will be the Remainder.
Quotient = Num1 / Num2 Reminder = Num1 - (Quotient * Num2)
Below is the implementation of the above approach:
C++
// C++ code to implement the above approach #include <bits/stdc++.h> using namespace std; // Function to find the remainder when Num1 is divided by // Num2 without using % operator int solve( int Num1, int Num2) { return Num1 - ((Num1 / Num2) * Num2); } // Driver Code int main() { int Num1 = 11; int Num2 = 3; // Function Call cout << solve(Num1, Num2) << endl; return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { // Function to find the remainder when Num1 is divided // by Num2 without using % operator static int solve( int Num1, int Num2) { return Num1 - ((Num1 / Num2) * Num2); } public static void main(String[] args) { int Num1 = 11 ; int Num2 = 3 ; // Function Call System.out.println(solve(Num1, Num2)); } } // This code is contributed by aadityaburujwale. |
Python3
# Python3 code to implement the above approach # Function to find the remainder when Num1 is divided by # Num2 without using % operator def solve(Num1, Num2): return Num1 - ( int (Num1 / Num2) * Num2); # Driver Code Num1 = 11 Num2 = 3 # Function Call print ( int (solve(Num1, Num2))) # This code is contributed by akashish__ |
C#
using System; public class GFG { // Function to find the remainder when Num1 is divided // by // Num2 without using % operator public static int solve( int Num1, int Num2) { return Num1 - ((Num1 / Num2) * Num2); } static public void Main() { int Num1 = 11; int Num2 = 3; // Function Call Console.WriteLine(solve(Num1, Num2)); } } // This code is contributed by akashish__. |
Javascript
<script> // Function to find the remainder when Num1 is divided by // Num2 without using % operator function solve( Num1,Num2) { return Num1 - (Math.floor(Num1 / Num2) * Num2); } // Driver Code let Num1 = 11; let Num2 = 3; // Function Call console.log(solve(Num1, Num2)); // This code is contributed by akashish__ </script> |
2
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...