Recursive solution to count substrings with same first and last characters
We are given a string S, we need to find count of all contiguous substrings starting and ending with same character.
Examples :
Input : S = "abcab" Output : 7 There are 15 substrings of "abcab" a, ab, abc, abca, abcab, b, bc, bca bcab, c, ca, cab, a, ab, b Out of the above substrings, there are 7 substrings : a, abca, b, bcab, c, a and b. Input : S = "aba" Output : 4 The substrings are a, b, a and aba
We have discussed different solutions in below post.
Count substrings with same first and last characters
In this article, a simple recursive solution is discussed.
Implementation:
C++
// c++ program to count substrings with same // first and last characters #include <iostream> #include <string> using namespace std; /* Function to count substrings with same first and last characters*/ int countSubstrs(string str, int i, int j, int n) { // base cases if (n == 1) return 1; if (n <= 0) return 0; int res = countSubstrs(str, i + 1, j, n - 1) + countSubstrs(str, i, j - 1, n - 1) - countSubstrs(str, i + 1, j - 1, n - 2); if (str[i] == str[j]) res++; return res; } // driver code int main() { string str = "abcab" ; int n = str.length(); cout << countSubstrs(str, 0, n - 1, n); } |
Java
// Java program to count substrings // with same first and last characters class GFG { // Function to count substrings // with same first and // last characters static int countSubstrs(String str, int i, int j, int n) { // base cases if (n == 1 ) return 1 ; if (n <= 0 ) return 0 ; int res = countSubstrs(str, i + 1 , j, n - 1 ) + countSubstrs(str, i, j - 1 , n - 1 ) - countSubstrs(str, i + 1 , j - 1 , n - 2 ); if (str.charAt(i) == str.charAt(j)) res++; return res; } // Driver code public static void main (String[] args) { String str = "abcab" ; int n = str.length(); System.out.print(countSubstrs(str, 0 , n - 1 , n)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python 3 program to count substrings with same # first and last characters # Function to count substrings with same first and # last characters def countSubstrs( str , i, j, n): # base cases if (n = = 1 ): return 1 if (n < = 0 ): return 0 res = (countSubstrs( str , i + 1 , j, n - 1 ) + countSubstrs( str , i, j - 1 , n - 1 ) - countSubstrs( str , i + 1 , j - 1 , n - 2 )) if ( str [i] = = str [j]): res + = 1 return res # driver code str = "abcab" n = len ( str ) print (countSubstrs( str , 0 , n - 1 , n)) # This code is contributed by Smitha |
Javascript
<script> // Javascript program to count substrings // with same first and last characters // Function to count substrings // with same first and // last characters function countSubstrs(str, i, j, n) { // Base cases if (n == 1) return 1; if (n <= 0) return 0; let res = countSubstrs(str, i + 1, j, n - 1) + countSubstrs(str, i, j - 1, n - 1) - countSubstrs(str, i + 1, j - 1, n - 2); if (str[i] == str[j]) res++; return res; } // Driver code let str = "abcab" ; let n = str.length; document.write(countSubstrs(str, 0, n - 1, n)); // This code is contributed by rameshtravel07 </script> |
C#
// C# program to count substrings // with same first and last characters using System; class GFG { // Function to count substrings // with same first and // last characters static int countSubstrs( string str, int i, int j, int n) { // base cases if (n == 1) return 1; if (n <= 0) return 0; int res = countSubstrs(str, i + 1, j, n - 1) + countSubstrs(str, i, j - 1, n - 1) - countSubstrs(str, i + 1, j - 1, n - 2); if (str[i] == str[j]) res++; return res; } // Driver code public static void Main () { string str = "abcab" ; int n = str.Length; Console.WriteLine( countSubstrs(str, 0, n - 1, n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to count // substrings with same // first and last characters //Function to count substrings // with same first and // last characters function countSubstrs( $str , $i , $j , $n ) { // base cases if ( $n == 1) return 1; if ( $n <= 0) return 0; $res = countSubstrs( $str , $i + 1, $j , $n - 1) + countSubstrs( $str , $i , $j - 1, $n - 1) - countSubstrs( $str , $i + 1, $j - 1, $n - 2); if ( $str [ $i ] == $str [ $j ]) $res ++; return $res ; } // Driver Code $str = "abcab" ; $n = strlen ( $str ); echo (countSubstrs( $str , 0, $n - 1, $n )); // This code is contributed by Ajit. ?> |
7
The time complexity of above solution is exponential. In Worst case, we may end up doing O(3n) operations.
Auxiliary Space: O(n), where n is the length of string.
This is because when string is passed in the function it creates a copy of itself in stack.
There is also a divide and conquer recursive approach
The idea is to split the string in half until we get one element and have our base case return 2 things
- a map containing the character to the number of occurrences (i.e a:1 since its the base case)
- (This is the total number of substring with start and end with the same char. Since the base case is a string of size one, it starts and ends with the same character)
Then combine the solutions of the left and right division of the string, then return a new solution based on left and right. This new solution can be constructed by multiplying the common characters between the left and right set and adding to the solution count from left and right, and returning a map containing element occurrence count and solution count
Implementation:
Java
import java.util.HashMap; import java.util.Map; public class CountSubstr { public static void main(String[] args) { System.out.println(countSubstr( "abcab" )); } public static int countSubstr(String s) { if (s.length() == 0 ) { return 0 ; } Map<Character, Integer> charMap = new HashMap<>(); int [] numSubstr = { 0 }; countSubstrHelper(s, 0 , s.length() - 1 , charMap, numSubstr); return numSubstr[ 0 ]; } public static void countSubstrHelper(String string, int start, int end, Map<Character, Integer> charMap, int [] numSubstr) { if (start >= end) { // our base case for the recursion. // When we have one character charMap.put(string.charAt(start), 1 ); numSubstr[ 0 ] = 1 ; return ; } int mid = (start + end) / 2 ; Map<Character, Integer> mapLeft = new HashMap<>(); int [] numSubstrLeft = { 0 }; countSubstrHelper( string, start, mid, mapLeft, numSubstrLeft); // solve the left half Map<Character, Integer> mapRight = new HashMap<>(); int [] numSubstrRight = { 0 }; countSubstrHelper( string, mid + 1 , end, mapRight, numSubstrRight); // solve the right half // add number of substrings from left and right numSubstr[ 0 ] = numSubstrLeft[ 0 ] + numSubstrRight[ 0 ]; // multiply the characters from left set with // matching characters from right set then add to // total number of substrings for ( char ch : mapLeft.keySet()) { if (mapRight.containsKey(ch)) { numSubstr[ 0 ] += mapLeft.get(ch) * mapRight.get(ch); } } // Add all the key,value pairs from right map to // left map for ( char ch : mapRight.keySet()) { if (mapLeft.containsKey(ch)) { mapLeft.put(ch, mapLeft.get(ch) + mapRight.get(ch)); } else { mapLeft.put(ch, mapRight.get(ch)); } } // Return the map of character and the sum of // substring from left, right and self charMap.putAll(mapLeft); } } |
Python3
# code def countSubstr(s): if len (s) = = 0 : return 0 charMap, numSubstr = countSubstrHelper(s, 0 , len (s) - 1 ) return numSubstr def countSubstrHelper(string, start, end): if start > = end: # our base case for the recursion. When we have one character return {string[start]: 1 }, 1 mid = (start + end) / / 2 mapLeft, numSubstrLeft = countSubstrHelper( string, start, mid) # solve the left half mapRight, numSubstrRight = countSubstrHelper( string, mid + 1 , end) # solve the right half # add number of substrings from left and right numSubstrSelf = numSubstrLeft + numSubstrRight # multiply the characters from left set with matching characters from right set # then add to total number of substrings for char in mapLeft: if char in mapRight: numSubstrSelf + = mapLeft[char] * mapRight[char] # Add all the key,value pairs from right map to left map for char in mapRight: if char in mapLeft: mapLeft[char] + = mapRight[char] else : mapLeft[char] = mapRight[char] # Return the map of character and the sum of substring from left, right and self return mapLeft, numSubstrSelf print (countSubstr( "abcab" )) # Contributed by Xavier Jean Baptiste |
Javascript
// JavaScript code function countSubstr(s) { if (s.length == 0) { return 0; } let [charMap, numSubstr] = countSubstrHelper(s, 0, s.length - 1); return numSubstr; } function countSubstrHelper(string, start, end) { // our base case for the recursion. When we have one character if (start >= end) { return [{ [string[start]]: 1 }, 1]; } let mid = Math.floor((start + end) / 2); // solve the left half let [mapLeft, numSubstrLeft] = countSubstrHelper(string, start, mid); // solve the right half // add number of substrings from left and right let [mapRight, numSubstrRight] = countSubstrHelper(string, mid + 1, end); let numSubstrSelf = numSubstrLeft + numSubstrRight; // multiply the characters from left set with matching characters from right set // then add to total number of substrings for (let char in mapLeft) { if (char in mapRight) { numSubstrSelf += mapLeft[char] * mapRight[char]; } } // Add all the key,value pairs from right map to left map for (let char in mapRight) { if (char in mapLeft) { mapLeft[char] += mapRight[char]; } else { mapLeft[char] = mapRight[char]; } } // Return the map of character and the sum of substring from left, right and self return [mapLeft, numSubstrSelf]; } console.log(countSubstr( "abcab" )); // This code is contributed by adityashatmfh |
C#
using System; using System.Collections.Generic; public class CountSubstr { public static void Main( string [] args) { Console.WriteLine(countSubstr( "abcab" )); } public static int countSubstr( string s) { if (s.Length == 0) { return 0; } Dictionary< char , int > charMap = new Dictionary< char , int >(); int [] numSubstr = { 0 }; countSubstrHelper(s, 0, s.Length - 1, charMap, numSubstr); return numSubstr[0]; } public static void countSubstrHelper( string s, int start, int end, Dictionary< char , int > charMap, int [] numSubstr) { if (start >= end) { // our base case for the recursion. When we have // one character charMap[s[start]] = 1; numSubstr[0] = 1; return ; } int mid = (start + end) / 2; Dictionary< char , int > mapLeft = new Dictionary< char , int >(); int [] numSubstrLeft = { 0 }; countSubstrHelper( s, start, mid, mapLeft, numSubstrLeft); // solve the left half Dictionary< char , int > mapRight = new Dictionary< char , int >(); int [] numSubstrRight = { 0 }; countSubstrHelper( s, mid + 1, end, mapRight, numSubstrRight); // solve the right half // add number of substrings from left and right numSubstr[0] = numSubstrLeft[0] + numSubstrRight[0]; // multiply the characters from left set with // matching characters from right set then add to // total number of substrings foreach ( char ch in mapLeft.Keys) { if (mapRight.ContainsKey(ch)) { numSubstr[0] += mapLeft[ch] * mapRight[ch]; } } // Add all the key,value pairs from right map to // left map foreach ( char ch in mapRight.Keys) { if (mapLeft.ContainsKey(ch)) { mapLeft[ch] = mapLeft[ch] + mapRight[ch]; } else { mapLeft[ch] = mapRight[ch]; } } // Return the map of character and the sum of // substring from left, right and self foreach (KeyValuePair< char , int > entry in mapLeft) { charMap[entry.Key] = entry.Value; } } } // This code in contributed by shiv1o43g |
C++
#include <iostream> #include <unordered_map> using namespace std; void countSubstrHelper(string s, int start, int end, unordered_map< char , int >& charMap, int & numSubstr) { if (start >= end) { // base case charMap[s[start]] = 1; numSubstr = 1; return ; } int mid = (start + end) / 2; unordered_map< char , int > mapLeft, mapRight; int numSubstrLeft = 0, numSubstrRight = 0; countSubstrHelper(s, start, mid, mapLeft, numSubstrLeft); // solve the left half countSubstrHelper( s, mid + 1, end, mapRight, numSubstrRight); // solve the right half // add number of substrings from left and right numSubstr = numSubstrLeft + numSubstrRight; // multiply the characters from left set with matching // characters from right set then add to total number of // substrings for ( auto it = mapLeft.begin(); it != mapLeft.end(); ++it) { if (mapRight.find(it->first) != mapRight.end()) { numSubstr += it->second * mapRight[it->first]; } } // Add all the key,value pairs from right map to left // map for ( auto it = mapRight.begin(); it != mapRight.end(); ++it) { if (mapLeft.find(it->first) != mapLeft.end()) { mapLeft[it->first] += it->second; } else { mapLeft[it->first] = it->second; } } // Return the map of character and the sum of substring // from left, right and self charMap = mapLeft; } int countSubstr(string s) { if (s.length() == 0) { return 0; } unordered_map< char , int > charMap; int numSubstr = 0; countSubstrHelper(s, 0, s.length() - 1, charMap, numSubstr); return numSubstr; } int main() { cout << countSubstr( "abcab" ) << endl; return 0; } // This code is contributed by shivhack999 |
7
The time complexity of the above solution is O(nlogn) with space complexity O(n) which occurs if all elements are distinct
This article is contributed by Yash Singla. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...