Open in App
Not now

# Recursive program to print all subsets with given sum

• Difficulty Level : Medium
• Last Updated : 12 Jul, 2021

Given an array and a number, print all subsets with sum equal to given the sum.
Examples:

```Input :  arr[] =  {2, 5, 8, 4, 6, 11}, sum = 13
Output :
5 8
2 11
2 5 6

Input : arr[] =  {1, 5, 8, 4, 6, 11}, sum = 9
Output :
5 4
1 8```

This problem is an extension of check if there is a subset with given sum. We recursively generate all subsets. We keep track of elements of current subset. If sum of elements in current subset becomes equal to given sum, we print the subset.

## C++

 `// CPP program to print all subsets with given sum` `#include ` `using` `namespace` `std;`   `// The vector v stores current subset.` `void` `printAllSubsetsRec(``int` `arr[], ``int` `n, vector<``int``> v,` `                        ``int` `sum)` `{` `    ``// If remaining sum is 0, then print all` `    ``// elements of current subset.` `    ``if` `(sum == 0) {` `        ``for` `(``auto` `x : v)` `            ``cout << x << ``" "``;` `        ``cout << endl;` `        ``return``;` `    ``}`   `    ``// If no remaining elements,` `    ``if` `(n == 0)` `        ``return``;`   `    ``// We consider two cases for every element.` `    ``// a) We do not include last element.` `    ``// b) We include last element in current subset.` `    ``printAllSubsetsRec(arr, n - 1, v, sum);` `    ``v.push_back(arr[n - 1]);` `    ``printAllSubsetsRec(arr, n - 1, v, sum - arr[n - 1]);` `}`   `// Wrapper over printAllSubsetsRec()` `void` `printAllSubsets(``int` `arr[], ``int` `n, ``int` `sum)` `{` `    ``vector<``int``> v;` `    ``printAllSubsetsRec(arr, n, v, sum);` `}`   `// Driver code` `int` `main()` `{` `    ``int` `arr[] = { 2, 5, 8, 4, 6, 11 };` `    ``int` `sum = 13;` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``printAllSubsets(arr, n, sum);` `    ``return` `0;` `}`

## Java

 `// Java program to print all subsets with given sum ` `import` `java.util.*;` ` ``class` `Solution` `{`   `// The vector v stores current subset. ` `static` `void` `printAllSubsetsRec(``int` `arr[], ``int` `n, Vector v, ` `                        ``int` `sum) ` `{ ` `    ``// If remaining sum is 0, then print all ` `    ``// elements of current subset. ` `    ``if` `(sum == ``0``) { ` `        ``for` `(``int` `i=``0``;i v1=``new` `Vector(v);` `    ``v1.add(arr[n - ``1``]); ` `    ``printAllSubsetsRec(arr, n - ``1``, v1, sum - arr[n - ``1``]); ` `} `   `// Wrapper over printAllSubsetsRec() ` `static` `void` `printAllSubsets(``int` `arr[], ``int` `n, ``int` `sum) ` `{ ` `    ``Vector v= ``new` `Vector(); ` `    ``printAllSubsetsRec(arr, n, v, sum); ` `} `   `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `arr[] = { ``2``, ``5``, ``8``, ``4``, ``6``, ``11` `}; ` `    ``int` `sum = ``13``; ` `    ``int` `n = arr.length; ` `    ``printAllSubsets(arr, n, sum); ` `    `  `}` `} ` `//contributed by Arnab Kundu`

## Python3

 `# Python program to print all subsets with given sum`   `# The vector v stores current subset.` `def` `printAllSubsetsRec(arr, n, v, ``sum``) :`   `    ``# If remaining sum is 0, then print all` `    ``# elements of current subset.` `    ``if` `(``sum` `=``=` `0``) :` `        ``for` `value ``in` `v :` `            ``print``(value, end``=``" "``)` `        ``print``()` `        ``return` `    `    `    ``# If no remaining elements,` `    ``if` `(n ``=``=` `0``):` `        ``return`   `    ``# We consider two cases for every element.` `    ``# a) We do not include last element.` `    ``# b) We include last element in current subset.` `    ``printAllSubsetsRec(arr, n ``-` `1``, v, ``sum``)` `    ``v1 ``=` `[] ``+` `v` `    ``v1.append(arr[n ``-` `1``])` `    ``printAllSubsetsRec(arr, n ``-` `1``, v1, ``sum` `-` `arr[n ``-` `1``])`     `# Wrapper over printAllSubsetsRec()` `def` `printAllSubsets(arr, n, ``sum``):`   `    ``v ``=` `[]` `    ``printAllSubsetsRec(arr, n, v, ``sum``)`     `# Driver code`   `arr ``=` `[ ``2``, ``5``, ``8``, ``4``, ``6``, ``11` `]` `sum` `=` `13` `n ``=` `len``(arr)` `printAllSubsets(arr, n, ``sum``)`   `# This code is contributed by ihritik`

## C#

 `// C# program to print all subsets with given sum ` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG ` `{ ` `    ``// The vector v stores current subset. ` `    ``static` `void` `printAllSubsetsRec(``int` `[]arr, ``int` `n, ` `                                    ``List<``int``> v, ``int` `sum) ` `    ``{ ` `        ``// If remaining sum is 0, then print all ` `        ``// elements of current subset. ` `        ``if` `(sum == 0)` `        ``{ ` `            ``for` `(``int` `i = 0; i < v.Count; i++) ` `                ``Console.Write( v[i]+ ``" "``); ` `            ``Console.WriteLine(); ` `            ``return``; ` `        ``} `   `        ``// If no remaining elements, ` `        ``if` `(n == 0) ` `            ``return``; `   `        ``// We consider two cases for every element. ` `        ``// a) We do not include last element. ` `        ``// b) We include last element in current subset. ` `        ``printAllSubsetsRec(arr, n - 1, v, sum); ` `        ``List<``int``> v1 = ``new` `List<``int``>(v); ` `        ``v1.Add(arr[n - 1]); ` `        ``printAllSubsetsRec(arr, n - 1, v1, sum - arr[n - 1]); ` `    ``} `   `    ``// Wrapper over printAllSubsetsRec() ` `    ``static` `void` `printAllSubsets(``int` `[]arr, ``int` `n, ``int` `sum) ` `    ``{ ` `        ``List<``int``> v = ``new` `List<``int``>(); ` `        ``printAllSubsetsRec(arr, n, v, sum); ` `    ``} `   `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `[]arr = { 2, 5, 8, 4, 6, 11 }; ` `        ``int` `sum = 13; ` `        ``int` `n = arr.Length; ` `        ``printAllSubsets(arr, n, sum); ` `    ``} ` `} `   `// This code is contributed by Rajput-Ji `

## PHP

 ``

## Javascript

 ``

Output:

```8 5
6 5 2
11 2```

Time Complexity : O(2n)
Please refer below post for an optimized solution based on Dynamic Programming.
Print all subsets with given sum using Dynamic Programming

My Personal Notes arrow_drop_up
Related Articles