Reconstruct the array by replacing arr[i] with (arr[i-1]+1) % M
Given an array of N elements and an integer M. Now, the array is modified by replacing some of the array elements with -1. The task is to print the original array.
The elements in the original array are related as, for every index i, a[i] = (a[i-1]+1)% M.
It is guaranteed that there is one non-zero value in the array.
Examples:
Input: arr[] = {5, -1, -1, 1, 2, 3}, M = 7 Output: 5 6 0 1 2 3 M = 7, so value at index 2 should be (5+1) % 7 = 6 value at index 3 should be (6+1) % 7 = 0 Input: arr[] = {5, -1, 7, -1, 9, 0}, M = 10 Output: 5 6 7 8 9 0
Approach: First find the index of the non-negative value index i. Then simply go in two directions i.e. From i-1 to 0 and i+1 to n.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; void construct( int n, int m, int a[]) { int ind = 0; // Finding the index which is not -1 for ( int i = 0; i < n; i++) { if (a[i] != -1) { ind = i; break ; } } // Calculating the values of // the indexes ind-1 to 0 for ( int i = ind - 1; i > -1; i--) { if (a[i] == -1) a[i] = (a[i + 1] - 1 + m) % m; } // Calculating the values of // the indexes ind + 1 to n for ( int i = ind + 1; i < n; i++) { if (a[i] == -1) a[i] = (a[i - 1] + 1) % m; } for ( int i = 0; i < n; i++) { cout<< a[i] << " " ; } } // Driver code int main() { int n = 6, m = 7; int a[] = { 5, -1, -1, 1, 2, 3 }; construct(n, m, a); return 0; } // This code is contributed by 29AjayKumar |
Java
// Java implementation of the above approach import java.io.*; public class GFG { static void construct( int n, int m, int [] a) { int ind = 0 ; // Finding the index which is not -1 for ( int i = 0 ; i < n; i++) { if (a[i] != - 1 ) { ind = i; break ; } } // Calculating the values of // the indexes ind-1 to 0 for ( int i = ind - 1 ; i > - 1 ; i--) { if (a[i] == - 1 ) a[i] = (a[i + 1 ] - 1 + m) % m; } // Calculating the values of // the indexes ind + 1 to n for ( int i = ind + 1 ; i < n; i++) { if (a[i] == - 1 ) a[i] = (a[i - 1 ] + 1 ) % m; } for ( int i = 0 ; i < n; i++) { System.out.print(a[i] + " " ); } } // Driver code public static void main(String[] args) { int n = 6 , m = 7 ; int [] a = { 5 , - 1 , - 1 , 1 , 2 , 3 }; construct(n, m, a); } } // This code is contributed by 29AjayKumar |
Python3
# Python implementation of the above approach def construct(n, m, a): ind = 0 # Finding the index which is not -1 for i in range (n): if (a[i]! = - 1 ): ind = i break # Calculating the values of the indexes ind-1 to 0 for i in range (ind - 1 , - 1 , - 1 ): if (a[i] = = - 1 ): a[i] = (a[i + 1 ] - 1 + m) % m # Calculating the values of the indexes ind + 1 to n for i in range (ind + 1 , n): if (a[i] = = - 1 ): a[i] = (a[i - 1 ] + 1 ) % m print ( * a) # Driver code n, m = 6 , 7 a = [ 5 , - 1 , - 1 , 1 , 2 , 3 ] construct(n, m, a) |
C#
// C# implementation of the above approach using System; class GFG { static void construct( int n, int m, int [] a) { int ind = 0; // Finding the index which is not -1 for ( int i = 0; i < n; i++) { if (a[i] != -1) { ind = i; break ; } } // Calculating the values of // the indexes ind-1 to 0 for ( int i = ind - 1; i > -1; i--) { if (a[i] == -1) a[i] = (a[i + 1] - 1 + m) % m; } // Calculating the values of // the indexes ind + 1 to n for ( int i = ind + 1; i < n; i++) { if (a[i] == -1) a[i] = (a[i - 1] + 1) % m; } for ( int i = 0; i < n; i++) { Console.Write(a[i] + " " ); } } // Driver code public static void Main(String[] args) { int n = 6, m = 7; int [] a = { 5, -1, -1, 1, 2, 3 }; construct(n, m, a); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of above approach function construct(n, m, a) { var ind = 0; // Finding the index which is not -1 for ( var i = 0; i < n; i++) { if (a[i] != -1) { ind = i; break ; } } // Calculating the values of // the indexes ind-1 to 0 for ( var i = ind - 1; i > -1; i--) { if (a[i] == -1) a[i] = (a[i + 1] - 1 + m) % m; } // Calculating the values of // the indexes ind + 1 to n for ( var i = ind + 1; i < n; i++) { if (a[i] == -1) a[i] = (a[i - 1] + 1) % m; } for ( var i = 0; i < n; i++) { document.write( a[i] + " " ); } } // Driver code var n = 6, m = 7; var a = [5, -1, -1, 1, 2, 3]; construct(n, m, a); </script> |
Output
5 6 0 1 2 3
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(1)
Please Login to comment...