Rearrange an array such that product of every two consecutive elements is a multiple of 4
Given an array arr[] of size N, the task is to rearrange the array elements such that for every index i(1 <= i <= N – 1), the product of arr[i] and arr[i – 1] is a multiple of 4.
Example:
Input: arr[] = {1, 10, 100}
Output: 1, 100, 10
Explanation:
1 * 100 is divisible by 4
100 * 10 is divisible by 4Input: arr[] = {2, 7, 1, 8, 2, 8}
Output: 7, 8, 1, 8, 2, 2
Naive Approach:
The simplest approach to solve the problem is to generate all possible permutations of the array and for every permutation, check if the product of every two consecutive elements is a multiple of 4 or not.
Time complexity: O(N^2 * N!)
Auxiliary Space: O(N!)
Efficient Approach:
Follow the steps below to optimize the above approach:
- Initialize following three variables:
- odd = Number of odd elements.
- four = Number of elements divisible by 4.
- non_four = Number of even elements not divisible by 4.
- Consider the following two cases:
- Case 1: non_four = 0
In this case, no even elements are present which are not divisible by 4.- The optimal way is to first place the “odd” elements first in the array in alternate positions.
- Fill the vacancies with the even elements.
- Case 1: non_four = 0
Illustration
arr[] = {1, 1, 1, 4, 4}
Step 0: four = 2, odd = 3
Step 1: {1 _ 1 _ 1}
Step 2: {1 4 1 4 1}
- Hence, for the approach to be mathematically possible, the difference between the count of even and odd elements should not exceed 1.
- Case 2: non_four > 0
In this case, even elements that are not divisible by 4 exist in the array.
- Follow the exact same strategy as depicted above by placing the elements divisible by 4 in alternate positions followed by odd elements in the vacancies.
- Then, place all the remaining even elements at the end of the array. This is because the product of two even numbers is always divisible by 4. Hence, placing the even elements towards the end of the array guarantees that the product of consecutive elements among them is divisible by 4.
Illustration:
arr[] = {2, 7, 1, 8, 2, 8}
Step 1: four = 2, non_four = 2, odd = 2
Step 2: {_ 8 _ 8}
Step 3: {1 8 7 8}
Step 4: {1 8 7 8 2 2}
- For this to be possible mathematically, four >= odd.
Below is the implementation of the above approach:
C++
// C++ Program to rearray array // elements such that the product // of every two consecutive // elements is a multiple of 4 #include <bits/stdc++.h> using namespace std; // Function to rearrange array // elements such that the every // two consecutive elements is // a multiple of 4 void Permute(vector< int >& arr, int n) { int odd = 0, four = 0; int non_four = 0; vector< int > ODD, FOUR, NON_FOUR; for ( auto x : arr) { // If element is odd if (x & 1) { odd++; // Odd ODD.push_back(x); } // If element is divisible // by 4 else if (x % 4 == 0) { four++; // Divisible by 4 FOUR.push_back(x); } // If element is not // divisible by 4 else { non_four++; // Even but not divisible // by 4 NON_FOUR.push_back(x); } } // Condition for rearrangement // to be possible if (non_four == 0 && four >= odd - 1) { int x = ODD.size(); int y = FOUR.size(); int i; // Print ODD[i] and FOUR[i] // consecutively for (i = 0; i < x; i++) { cout << ODD[i] << " " ; if (i < y) cout << FOUR[i] << " " ; } // Print the remaining // FOUR[i], if any while (i < y) cout << FOUR[i] << " " ; cout << endl; } // Condition for rearrangement // to be possible else if (non_four > 0 and four >= odd) { int x = ODD.size(); int y = FOUR.size(); int i; // Print ODD[i] and FOUR[i] // consecutively for (i = 0; i < x; i++) { cout << ODD[i] << " " ; if (i < y) cout << FOUR[i] << " " ; } // Print the remaining // FOUR[i], if any while (i < y) cout << FOUR[i] << " " ; // Print the NON_FOUR[i] // elements at the end for ( int j = 0; j < ( int )NON_FOUR.size(); j++) cout << NON_FOUR[j] << " " ; cout << endl; } else // No possible configuration cout << "Not Possible" << endl; } // Driver Code signed main() { vector< int > arr = { 2, 7, 1, 8, 2, 8 }; int N = sizeof (arr) / sizeof (arr); Permute(arr, N); return 0; } |
Java
// Java program to rearray array // elements such that the product // of every two consecutive // elements is a multiple of import java.io.*; import java.util.*; class GFG{ // Function to rearrange array // elements such that the every // two consecutive elements is // a multiple of 4 public static void Permute(Vector<Integer> arr, int n) { int odd = 0 , four = 0 ; int non_four = 0 ; Vector<Integer> ODD = new Vector<Integer>(); Vector<Integer> FOUR = new Vector<Integer>(n); Vector<Integer> NON_FOUR = new Vector<Integer>(n); for ( int x : arr) { // If element is odd if (x % 2 != 0 ) { odd++; // Odd ODD.add(x); } // If element is divisible // by 4 else if (x % 4 == 0 ) { four++; // Divisible by 4 FOUR.add(x); } // If element is not // divisible by 4 else { non_four++; // Even but not divisible // by 4 NON_FOUR.add(x); } } // Condition for rearrangement // to be possible if (non_four == 0 && four >= odd - 1 ) { int x = ODD.size(); int y = FOUR.size(); int i; // Print ODD.get(i) and FOUR.get(i) // consecutively for (i = 0 ; i < x; i++) { System.out.print(ODD.get(i) + " " ); if (i < y) System.out.print(FOUR.get(i) + " " ); } // Print the remaining // FOUR.get(i), if any while (i < y) System.out.print(FOUR.get(i) + " " ); System.out.println(); } // Condition for rearrangement // to be possible else if (non_four > 0 && four >= odd) { int x = ODD.size(); int y = FOUR.size(); int i; // Print ODD.get(i) and FOUR.get(i) // consecutively for (i = 0 ; i < x; i++) { System.out.print(ODD.get(i) + " " ); if (i < y) System.out.print(FOUR.get(i) + " " ); } // Print the remaining // FOUR.get(i), if any while (i < y) System.out.print(FOUR.get(i) + " " ); // Print the NON_FOUR.get(i) // elements at the end for ( int j = 0 ; j < ( int )NON_FOUR.size(); j++) System.out.print(NON_FOUR.get(j) + " " ); System.out.println(); } else // No possible configuration System.out.println( "Not Possible" ); } // Driver Code public static void main(String[] args) { Vector<Integer> arr = new Vector<Integer>(); arr.add( 2 ); arr.add( 7 ); arr.add( 1 ); arr.add( 8 ); arr.add( 2 ); arr.add( 8 ); Permute(arr, arr.size()); } } // This code is contributed by grand_master |
Python3
# Python3 program to rearray array # elements such that the product # of every two consecutive # elements is a multiple of 4 # Function to rearrange array # elements such that the every # two consecutive elements is # a multiple of 4 def Permute(arr, n): odd = 0 four = 0 non_four = 0 ODD, FOUR, NON_FOUR = [], [], [] for x in arr: # If element is odd if (x & 1 ): odd + = 1 # Odd ODD.append(x) # If element is divisible # by 4 elif (x % 4 = = 0 ): four + = 1 # Divisible by 4 FOUR.append(x) # If element is not # divisible by 4 else : non_four + = 1 # Even but not divisible # by 4 NON_FOUR.append(x) # Condition for rearrangement # to be possible if (non_four = = 0 and four > = odd - 1 ): x = len (ODD) y = len (FOUR) i = 0 # Print ODD[i] and FOUR[i] # consecutively while i < x: print (ODD[i], end = " " ) if (i < y): print (FOUR[i], end = " " ) # Print the remaining # FOUR[i], if any while (i < y): print (FOUR[i], end = " " ) i + = 1 print () # Condition for rearrangement # to be possible elif (non_four > 0 and four > = odd): x = len (ODD) y = len (FOUR) i = 0 # Print ODD[i] and FOUR[i] # consecutively while i < x: print (ODD[i], end = " " ) if (i < y): print (FOUR[i], end = " " ) i + = 1 # Print the remaining # FOUR[i], if any while (i < y): print (FOUR[i], end = " " ) i + = 1 # Print the NON_FOUR[i] # elements at the end for j in NON_FOUR: print (j, end = " " ) else : # No possible configuration print ( "Not Possible" ) # Driver Code if __name__ = = '__main__' : arr = [ 2 , 7 , 1 , 8 , 2 , 8 ] N = len (arr) Permute(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# program to rearray array // elements such that the product // of every two consecutive // elements is a multiple of using System; using System.Collections.Generic; class GFG{ // Function to rearrange array // elements such that the every // two consecutive elements is // a multiple of 4 public static void Permute(List< int > arr, int n) { int odd = 0, four = 0; int non_four = 0; List< int > ODD = new List< int >(); List< int > FOUR = new List< int >(n); List< int > NON_FOUR = new List< int >(n); foreach ( int x in arr) { // If element is odd if (x % 2 != 0) { odd++; // Odd ODD.Add(x); } // If element is divisible // by 4 else if (x % 4 == 0) { four++; // Divisible by 4 FOUR.Add(x); } // If element is not // divisible by 4 else { non_four++; // Even but not divisible // by 4 NON_FOUR.Add(x); } } // Condition for rearrangement // to be possible if (non_four == 0 && four >= odd - 1) { int x = ODD.Count; int y = FOUR.Count; int i; // Print ODD[i] and FOUR[i] // consecutively for (i = 0; i < x; i++) { Console.Write(ODD[i] + " " ); if (i < y) Console.Write(FOUR[i] + " " ); } // Print the remaining // FOUR[i], if any while (i < y) Console.Write(FOUR[i] + " " ); Console.WriteLine(); } // Condition for rearrangement // to be possible else if (non_four > 0 && four >= odd) { int x = ODD.Count; int y = FOUR.Count; int i; // Print ODD[i] and FOUR[i] // consecutively for (i = 0; i < x; i++) { Console.Write(ODD[i] + " " ); if (i < y) Console.Write(FOUR[i] + " " ); } // Print the remaining // FOUR[i], if any while (i < y) Console.Write(FOUR[i] + " " ); // Print the NON_FOUR[i] // elements at the end for ( int j = 0; j < ( int )NON_FOUR.Count; j++) Console.Write(NON_FOUR[j] + " " ); Console.WriteLine(); } else // No possible configuration Console.WriteLine( "Not Possible" ); } // Driver Code public static void Main(String[] args) { List< int > arr = new List< int >(); arr.Add(2); arr.Add(7); arr.Add(1); arr.Add(8); arr.Add(2); arr.Add(8); Permute(arr, arr.Count); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to rearray array // elements such that the product // of every two consecutive // elements is a multiple of // Function to rearrange array // elements such that the every // two consecutive elements is // a multiple of 4 function Permute(arr,n) { let odd = 0, four = 0; let non_four = 0; let ODD = []; let FOUR = []; let NON_FOUR = []; for (let x = 0; x < arr.length; x++) { // If element is odd if (arr[x] % 2 != 0) { odd++; // Odd ODD.push(arr[x]); } // If element is divisible // by 4 else if (arr[x] % 4 == 0) { four++; // Divisible by 4 FOUR.push(arr[x]); } // If element is not // divisible by 4 else { non_four++; // Even but not divisible // by 4 NON_FOUR.push(arr[x]); } } // Condition for rearrangement // to be possible if (non_four == 0 && four >= odd - 1) { let x = ODD.length; let y = FOUR.length; let i; // Print ODD.get(i) and FOUR.get(i) // consecutively for (i = 0; i < x; i++) { document.write(ODD[i] + " " ); if (i < y) document.write(FOUR[i] + " " ); } // Print the remaining // FOUR.get(i), if any while (i < y) document.write(FOUR[i] + " " ); document.write( "<br>" ); } // Condition for rearrangement // to be possible else if (non_four > 0 && four >= odd) { let x = ODD.length; let y = FOUR.length; let i; // Print ODD.get(i) and FOUR.get(i) // consecutively for (i = 0; i < x; i++) { document.write(ODD[i] + " " ); if (i < y) document.write(FOUR[i] + " " ); } // Print the remaining // FOUR.get(i), if any while (i < y) document.write(FOUR[i] + " " ); // Print the NON_FOUR.get(i) // elements at the end for (let j = 0; j < NON_FOUR.length; j++) document.write(NON_FOUR[j] + " " ); document.write( "<br>" ); } else // No possible configuration document.write( "Not Possible<br>" ); } // Driver Code let arr=[2,7,1,8,2,8] Permute(arr, arr.length); // This code is contributed by patel2127 </script> |
Output:
7 8 1 8 2 2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...