Range Queries to find the Element having Maximum Digit Sum
Given an array Arr of N integers and Q queries, each query having a range from L to R. Find the element having maximum digit sum for the range L to R, and if more than one element has a maximum digit sum, then find the maximum element out of those.
Examples:
Input: Arr[] = { 16, 12, 43, 55} Q = 2 L = 0, R = 3 L = 0, R = 2 Output: 55 43 Explanation: The range (0, 3) in the 1st query has [16, 12, 43, 55]. Here, the digit sums are: for 16, 1 + 6 = 7 for 12, 1 + 2 = 3 for 43, 4 + 3 = 7 for 55, 5 + 5 = 10 Hence, the max digit sum is 10 and max digit sum value is 55. The range (0, 2) in the 1st query has [16, 12, 43]. Here, the digit sums are: for 16, 1 + 6 = 7 for 12, 1 + 2 = 3 for 43, 4 + 3 = 7 Hence, the max digit sum is 7 and max digit sum value is max( 16, 43) = 43.
Naive Approach:
A simple solution is to run a loop from L to R and calculate the digit sum for each element and find the maximum digit sum element from L to R for every query.
Below is the implementation of the approach:
C++
// C++ code for the approach #include <iostream> using namespace std; // Function to calculate the digit sum of a number int digit_sum( int n) { int sum = 0; while (n > 0) { sum += n % 10; n /= 10; } return sum; } // Function to find the element having maximum digit sum in // the given range int max_digit_sum( int arr[], int n, int l, int r) { int max_sum = -1, max_num = -1; for ( int i = l; i <= r; i++) { int sum = digit_sum(arr[i]); if (sum > max_sum) { max_sum = sum; max_num = arr[i]; } else if (sum == max_sum && arr[i] > max_num) { max_num = arr[i]; } } return max_num; } // Main function to handle the queries int main() { // Input array int arr[] = { 16, 12, 43, 55 }; // Calculates the length of array int n = sizeof (arr) / sizeof (arr[0]); // query 1 int l = 0, r = 3; cout << max_digit_sum(arr, n, l, r) << endl; // query 2 l = 0, r = 2; cout << max_digit_sum(arr, n, l, r) << endl; return 0; } |
Java
// Java code for the approach import java.util.*; public class GFG { // Function to calculate the digit sum of a number public static int digit_sum( int n) { int sum = 0 ; while (n > 0 ) { sum += n % 10 ; n /= 10 ; } return sum; } // Function to find the element having maximum digit sum // in // the given range public static int max_digit_sum( int [] arr, int n, int l, int r) { int max_sum = - 1 , max_num = - 1 ; for ( int i = l; i <= r; i++) { int sum = digit_sum(arr[i]); if (sum > max_sum) { max_sum = sum; max_num = arr[i]; } else if (sum == max_sum && arr[i] > max_num) { max_num = arr[i]; } } return max_num; } // Main function to handle the queries public static void main(String[] args) { // Input array int [] arr = { 16 , 12 , 43 , 55 }; // Calculates the length of array int n = arr.length; // query 1 int l = 0 , r = 3 ; System.out.println(max_digit_sum(arr, n, l, r)); // query 2 l = 0 ; r = 2 ; System.out.println(max_digit_sum(arr, n, l, r)); } } |
55 43
Time Complexity: O(Q * N * log10(Max)), where Max is the maximum value in arr.
Auxiliary Space: O(1).
Efficient Approach:
- An efficient approach will be to build a Segment Tree where each node stores two values(value and max_digit_sum), and do a range query on it to find the max digit sum and the corresponding element. But for building the segment tree we have to think about what to store on the nodes of the tree.
- For finding out the maximum digit sum value, we will require two things, one being the value and the other digit sum. The merging will return two things, the digit sum will store the max(max_digit_sum.left, max_digit_sum.right) in the segment tree and value will contain the corresponding element value.
- If we have a deep look into it, the max digit sum for any two range combining will either be the max digit sum from the left side or the max digit sum from the right side, whichever is maximum will taken into account.
- Representation of Segment trees:
- Leaf Nodes are the elements of the given array.
- Each internal node represents some merging of the leaf nodes. The merging may be different for different problems. For this problem, merging is the maximum of the max_digit_sum of leaves under a node.
- An array representation of the tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at (i-1)/2.
- Construction of Segment Tree from a given array:
- We start with a segment arr[0 . . . n-1]. And every time we divide the current segment into two halves(if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the max_digit_sum and the value in the corresponding node.
- We then do a range query on the segment tree to find out the max_digit_sum for the given range and output the corresponding value.
Below is the implementation of the above approach.
C++
// C++ program to find // maximum digit sum value #include <bits/stdc++.h> using namespace std; // Struct two store two values in one node struct Node { int value; int max_digit_sum; }; Node tree[4 * 10000]; // Function to find the digit sum // for a number int digitSum( int x) { int sum = 0; while (x) { sum += (x % 10); x /= 10; } } // Function to build the segment tree void build( int a[], int index, int beg, int end) { if (beg == end) { // If there is one element in array, tree[index].value = a[beg]; tree[index].max_digit_sum = digitSum(a[beg]); } else { int mid = (beg + end) / 2; // If there are more than one elements, // then recur for left and right subtrees build(a, 2 * index + 1, beg, mid); build(a, 2 * index + 2, mid + 1, end); if (tree[2 * index + 1].max_digit_sum > tree[2 * index + 2].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 1].max_digit_sum; tree[index].value = tree[2 * index + 1].value; } else if (tree[2 * index + 2].max_digit_sum > tree[2 * index + 1].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = tree[2 * index + 2].value; } else { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = max(tree[2 * index + 2].value, tree[2 * index + 1].value); } } } // Function to do the range query in the segment // tree for the maximum digit sum Node query( int index, int beg, int end, int l, int r) { Node result; result.value = result.max_digit_sum = -1; // If segment of this node is outside the given // range, then return the minimum value. if (beg > r || end < l) return result; // If segment of this node is a part of given // range, then return the node of the segment if (beg >= l && end <= r) return tree[index]; int mid = (beg + end) / 2; // If left segment of this node falls out of // range, then recur in the right side of // the tree if (l > mid) return query(2 * index + 2, mid + 1, end, l, r); // If right segment of this node falls out of // range, then recur in the left side of // the tree if (r <= mid) return query(2 * index + 1, beg, mid, l, r); // If a part of this segment overlaps with // the given range Node left = query(2 * index + 1, beg, mid, l, r); Node right = query(2 * index + 2, mid + 1, end, l, r); if (left.max_digit_sum > right.max_digit_sum) { result.max_digit_sum = left.max_digit_sum; result.value = left.value; } else if (right.max_digit_sum > left.max_digit_sum) { result.max_digit_sum = right.max_digit_sum; result.value = right.value; } else { result.max_digit_sum = left.max_digit_sum; result.value = max(right.value, left.value); } // Returns the value return result; } // Driver code int main() { int a[] = {16, 12, 43, 55}; // Calculates the length of array int N = sizeof (a) / sizeof (a[0]); // Calls the build function to build // the segment tree build(a, 0, 0, N - 1); // Find the max digit-sum value between // 0th and 3rd index of array cout << query(0, 0, N - 1, 0, 3).value << endl; // Find the max digit-sum value between // 0th and 2nd index of array cout << query(0, 0, N - 1, 0, 2).value << endl; return 0; } |
Java
// Java program to find // maximum digit sum value import java.util.*; class GFG{ // Struct two store two values // in one node static class Node { int value; int max_digit_sum; }; static Node []tree = new Node[ 4 * 10000 ]; // Function to find the digit sum // for a number static int digitSum( int x) { int sum = 0 ; while (x > 0 ) { sum += (x % 10 ); x /= 10 ; } return sum; } // Function to build the segment tree static void build( int a[], int index, int beg, int end) { if (beg == end) { // If there is one element in array, tree[index].value = a[beg]; tree[index].max_digit_sum = digitSum(a[beg]); } else { int mid = (beg + end) / 2 ; // If there are more than one elements, // then recur for left and right subtrees build(a, 2 * index + 1 , beg, mid); build(a, 2 * index + 2 , mid + 1 , end); if (tree[ 2 * index + 1 ].max_digit_sum > tree[ 2 * index + 2 ].max_digit_sum) { tree[index].max_digit_sum = tree[ 2 * index + 1 ].max_digit_sum; tree[index].value = tree[ 2 * index + 1 ].value; } else if (tree[ 2 * index + 2 ].max_digit_sum > tree[ 2 * index + 1 ].max_digit_sum) { tree[index].max_digit_sum = tree[ 2 * index + 2 ].max_digit_sum; tree[index].value = tree[ 2 * index + 2 ].value; } else { tree[index].max_digit_sum = tree[ 2 * index + 2 ].max_digit_sum; tree[index].value = Math.max(tree[ 2 * index + 2 ].value, tree[ 2 * index + 1 ].value); } } } // Function to do the range query in the segment // tree for the maximum digit sum static Node query( int index, int beg, int end, int l, int r) { Node result = new Node(); result.value = result.max_digit_sum = - 1 ; // If segment of this node is outside the given // range, then return the minimum value. if (beg > r || end < l) return result; // If segment of this node is a part of given // range, then return the node of the segment if (beg >= l && end <= r) return tree[index]; int mid = (beg + end) / 2 ; // If left segment of this node falls out of // range, then recur in the right side of // the tree if (l > mid) return query( 2 * index + 2 , mid + 1 , end, l, r); // If right segment of this node falls out of // range, then recur in the left side of // the tree if (r <= mid) return query( 2 * index + 1 , beg, mid, l, r); // If a part of this segment overlaps with // the given range Node left = query( 2 * index + 1 , beg, mid, l, r); Node right = query( 2 * index + 2 , mid + 1 , end, l, r); if (left.max_digit_sum > right.max_digit_sum) { result.max_digit_sum = left.max_digit_sum; result.value = left.value; } else if (right.max_digit_sum > left.max_digit_sum) { result.max_digit_sum = right.max_digit_sum; result.value = right.value; } else { result.max_digit_sum = left.max_digit_sum; result.value = Math.max(right.value, left.value); } // Returns the value return result; } // Driver code public static void main(String[] args) { int a[] = { 16 , 12 , 43 , 55 }; // Calculates the length of array int N = a.length; for ( int i = 0 ; i < tree.length; i++) tree[i] = new Node(); // Calls the build function to build // the segment tree build(a, 0 , 0 , N - 1 ); // Find the max digit-sum value between // 0th and 3rd index of array System.out.print( query( 0 , 0 , N - 1 , 0 , 3 ).value + "\n" ); // Find the max digit-sum value between // 0th and 2nd index of array System.out.print( query( 0 , 0 , N - 1 , 0 , 2 ).value + "\n" ); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program to find # maximum digit sum value # Struct two store two values in one node class Node: def __init__( self ): self .value = 0 self .max_digit_sum = 0 tree = [Node() for i in range ( 4 * 10000 )] # Function to find the digit sum # for a number def digitSum(x): sum = 0 ; while (x ! = 0 ): sum + = (x % 10 ) x / / = 10 return sum # Function to build the segment tree def build(a, index, beg, end): if (beg = = end): # If there is one element in array, tree[index].value = a[beg] tree[index].max_digit_sum = digitSum(a[beg]) else : mid = (beg + end) / / 2 # If there are more than one elements, # then recur for left and right subtrees build(a, 2 * index + 1 , beg, mid) build(a, 2 * index + 2 , mid + 1 , end) if (tree[ 2 * index + 1 ].max_digit_sum > tree[ 2 * index + 2 ].max_digit_sum): tree[index].max_digit_sum = tree[ 2 * index + 1 ].max_digit_sum tree[index].value = tree[ 2 * index + 1 ].value elif (tree[ 2 * index + 2 ].max_digit_sum > tree[ 2 * index + 1 ].max_digit_sum): tree[index].max_digit_sum = tree[ 2 * index + 2 ].max_digit_sum tree[index].value = tree[ 2 * index + 2 ].value else : tree[index].max_digit_sum = tree[ 2 * index + 2 ].max_digit_sum tree[index].value = max (tree[ 2 * index + 2 ].value, tree[ 2 * index + 1 ].value) # Function to do the range query in the segment # tree for the maximum digit sum def query(index, beg, end, l, r): result = Node() result.value = result.max_digit_sum = - 1 # If segment of this node is outside the given # range, then return the minimum value. if (beg > r or end < l): return result # If segment of this node is a part of given # range, then return the node of the segment if (beg > = l and end < = r): return tree[index] mid = (beg + end) / / 2 # If left segment of this node falls out of # range, then recur in the right side of # the tree if (l > mid): return query( 2 * index + 2 , mid + 1 , end, l, r) # If right segment of this node falls out of # range, then recur in the left side of # the tree if (r < = mid): return query( 2 * index + 1 , beg, mid, l, r) # If a part of this segment overlaps with # the given range left = query( 2 * index + 1 , beg, mid, l, r) right = query( 2 * index + 2 , mid + 1 , end, l, r) if (left.max_digit_sum > right.max_digit_sum): result.max_digit_sum = left.max_digit_sum result.value = left.value elif (right.max_digit_sum > left.max_digit_sum): result.max_digit_sum = right.max_digit_sum result.value = right.value else : result.max_digit_sum = left.max_digit_sum result.value = max (right.value, left.value) # Returns the value return result # Driver code if __name__ = = "__main__" : a = [ 16 , 12 , 43 , 55 ] # Calculates the length of array N = len (a) # Calls the build function to build # the segment tree build(a, 0 , 0 , N - 1 ) # Find the max digit-sum value between # 0th and 3rd index of array print (query( 0 , 0 , N - 1 , 0 , 3 ).value) # Find the max digit-sum value between # 0th and 2nd index of array print (query( 0 , 0 , N - 1 , 0 , 2 ).value) # This code is contributed by rutvik_56 |
C#
// C# program to find // maximum digit sum value using System; class GFG{ // Struct two store // two values in one node class Node { public int value; public int max_digit_sum; }; static Node []tree = new Node[4 * 10000]; // Function to find the digit sum // for a number static int digitSum( int x) { int sum = 0; while (x > 0) { sum += (x % 10); x /= 10; } return sum; } // Function to build the segment tree static void build( int []a, int index, int beg, int end) { if (beg == end) { // If there is one element in array, tree[index].value = a[beg]; tree[index].max_digit_sum = digitSum(a[beg]); } else { int mid = (beg + end) / 2; // If there are more than one elements, // then recur for left and right subtrees build(a, 2 * index + 1, beg, mid); build(a, 2 * index + 2, mid + 1, end); if (tree[2 * index + 1].max_digit_sum > tree[2 * index + 2].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 1].max_digit_sum; tree[index].value = tree[2 * index + 1].value; } else if (tree[2 * index + 2].max_digit_sum > tree[2 * index + 1].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = tree[2 * index + 2].value; } else { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = Math.Max(tree[2 * index + 2].value, tree[2 * index + 1].value); } } } // Function to do the range query // in the segment tree for the // maximum digit sum static Node query( int index, int beg, int end, int l, int r) { Node result = new Node(); result.value = result.max_digit_sum = -1; // If segment of this node is // outside the given range, // then return the minimum value. if (beg > r || end < l) return result; // If segment of this node // is a part of given range, // then return the node of the segment if (beg >= l && end <= r) return tree[index]; int mid = (beg + end) / 2; // If left segment of this // node falls out of range, // then recur in the right // side of the tree if (l > mid) return query(2 * index + 2, mid + 1, end, l, r); // If right segment of this // node falls out of range, // then recur in the left side of // the tree if (r <= mid) return query(2 * index + 1, beg, mid, l, r); // If a part of this segment // overlaps with the given range Node left = query(2 * index + 1, beg, mid, l, r); Node right = query(2 * index + 2, mid + 1, end, l, r); if (left.max_digit_sum > right.max_digit_sum) { result.max_digit_sum = left.max_digit_sum; result.value = left.value; } else if (right.max_digit_sum > left.max_digit_sum) { result.max_digit_sum = right.max_digit_sum; result.value = right.value; } else { result.max_digit_sum = left.max_digit_sum; result.value = Math.Max(right.value, left.value); } // Returns the value return result; } // Driver code public static void Main(String[] args) { int []a = {16, 12, 43, 55}; // Calculates the length // of array int N = a.Length; for ( int i = 0; i < tree.Length; i++) tree[i] = new Node(); // Calls the build function // to build the segment tree build(a, 0, 0, N - 1); // Find the max digit-sum value between // 0th and 3rd index of array Console.Write(query(0, 0, N - 1, 0, 3).value + "\n" ); // Find the max digit-sum value between // 0th and 2nd index of array Console.Write(query(0, 0, N - 1, 0, 2).value + "\n" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to find maximum digit sum value // Struct two store two values in one node class Node { constructor() { this .value = 0; this .max_digit_sum = 0; } } let tree = new Array(4 * 10000); // Function to find the digit sum for a number function digitSum(x) { let sum = 0; while (x > 0) { sum += (x % 10); x = parseInt(x / 10, 10); } return sum; } // Function to build the segment tree function build(a, index, beg, end) { if (beg == end) { // If there is one element in array, tree[index].value = a[beg]; tree[index].max_digit_sum = digitSum(a[beg]); } else { let mid = parseInt((beg + end) / 2, 10); // If there are more than one elements, // then recur for left and right subtrees build(a, 2 * index + 1, beg, mid); build(a, 2 * index + 2, mid + 1, end); if (tree[2 * index + 1].max_digit_sum > tree[2 * index + 2].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 1].max_digit_sum; tree[index].value = tree[2 * index + 1].value; } else if (tree[2 * index + 2].max_digit_sum > tree[2 * index + 1].max_digit_sum) { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = tree[2 * index + 2].value; } else { tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum; tree[index].value = Math.max(tree[2 * index + 2].value, tree[2 * index + 1].value); } } } // Function to do the range query // in the segment tree for the // maximum digit sum function query(index, beg, end, l, r) { let result = new Node(); result.value = result.max_digit_sum = -1; // If segment of this node is // outside the given range, // then return the minimum value. if (beg > r || end < l) return result; // If segment of this node // is a part of given range, // then return the node of the segment if (beg >= l && end <= r) return tree[index]; let mid = parseInt((beg + end) / 2, 10); // If left segment of this // node falls out of range, // then recur in the right // side of the tree if (l > mid) return query(2 * index + 2, mid + 1, end, l, r); // If right segment of this // node falls out of range, // then recur in the left side of // the tree if (r <= mid) return query(2 * index + 1, beg, mid, l, r); // If a part of this segment // overlaps with the given range let left = query(2 * index + 1, beg, mid, l, r); let right = query(2 * index + 2, mid + 1, end, l, r); if (left.max_digit_sum > right.max_digit_sum) { result.max_digit_sum = left.max_digit_sum; result.value = left.value; } else if (right.max_digit_sum > left.max_digit_sum) { result.max_digit_sum = right.max_digit_sum; result.value = right.value; } else { result.max_digit_sum = left.max_digit_sum; result.value = Math.max(right.value, left.value); } // Returns the value return result; } let a = [16, 12, 43, 55]; // Calculates the length // of array let N = a.length; for (let i = 0; i < tree.length; i++) tree[i] = new Node(); // Calls the build function // to build the segment tree build(a, 0, 0, N - 1); // Find the max digit-sum value between // 0th and 3rd index of array document.write(query(0, 0, N - 1, 0, 3).value + "</br>" ); // Find the max digit-sum value between // 0th and 2nd index of array document.write(query(0, 0, N - 1, 0, 2).value + "</br>" ); // This code is contributed by divyeshrabadiya07. </script> |
55 43
Complexity Analysis:
Time Complexity for tree construction is O(N). There are total 2n-1 nodes, and the value of every node is calculated only once in tree construction.
Time complexity to every query is O(log N).
Time complexity for the problem is O(Q * log N)
Please Login to comment...