Range LCM Queries
Given an array arr[] of integers of size N and an array of Q queries, query[], where each query is of type [L, R] denoting the range from index L to index R, the task is to find the LCM of all the numbers of the range for all the queries.
Examples:
Input: arr[] = {5, 7, 5, 2, 10, 12 ,11, 17, 14, 1, 44}
query[] = {{2, 5}, {5, 10}, {0, 10}}
Output: 60,15708, 78540
Explanation: In the first query LCM(5, 2, 10, 12) = 60
In the second query LCM(12, 11, 17, 14, 1, 44) = 15708
In the last query LCM(5, 7, 5, 2, 10, 12, 11, 17, 14, 1, 44) = 78540Input: arr[] = {2, 4, 8, 16}, query[] = {{2, 3}, {0, 1}}
Output: 16, 4
Naive Approach: The approach is based on the following mathematical idea:
Mathematically, LCM(l, r) = LCM(arr[l], arr[l+1] , . . . ,arr[r-1], arr[r]) and
LCM(a, b) = (a*b) / GCD(a,b)
So traverse the array for every query and calculate the answer by using the above formula for LCM.
Time Complexity: O(N * Q)
Auxiliary Space: O(1)
RangeLCM Queries using Segment tree:
As the number of queries can be large, the naive solution would be impractical. This time can be reduced
There is no update operation in this problem. So we can initially build a segment tree and use that to answer the queries in logarithmic time.
Each node in the tree should store the LCM value for that particular segment and we can use the same formula as above to combine the segments.
Follow the steps mentioned below to implement the idea:
- Build a segment tree from the given array.
- Traverse through the queries. For each query:
- Find that particular range in the segment tree.
- Use the above mentioned formula to combine the segments and calculate the LCM for that range.
- Print the answer for that segment.
Below is the implementation of the above approach.
C++
// LCM of given range queries using Segment Tree #include <bits/stdc++.h> using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // utility function to find lcm int lcm( int a, int b) { return a * b / gcd(a, b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build( int node, int start, int end) { // If there is only one element in current subarray if (start == end) { tree[node] = arr[start]; return ; } int mid = (start + end) / 2; // build left and right segments build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm, right_lcm); } // Function to make queries for array range )l, r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query( int node, int start, int end, int l, int r) { // Completely outside the segment, returning // 1 will not affect the lcm; if (end < l || start > r) return 1; // completely inside the segment if (l <= start && r >= end) return tree[node]; // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node, start, mid, l, r); int right_lcm = query(2 * node + 1, mid + 1, end, l, r); return lcm(left_lcm, right_lcm); } // driver function to check the above program int main() { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1, 0, 10); // Now we can answer each query efficiently // Print LCM of (2, 5) cout << query(1, 0, 10, 2, 5) << endl; // Print LCM of (5, 10) cout << query(1, 0, 10, 5, 10) << endl; // Print LCM of (0, 10) cout << query(1, 0, 10, 0, 10) << endl; return 0; } |
Java
// LCM of given range queries // using Segment Tree class GFG { static final int MAX = 1000 ; // allocate space for tree static int tree[] = new int [ 4 * MAX]; // declaring the array globally static int arr[] = new int [MAX]; // Function to return gcd of a and b static int gcd( int a, int b) { if (a == 0 ) { return b; } return gcd(b % a, a); } // utility function to find lcm static int lcm( int a, int b) { return a * b / gcd(a, b); } // Function to build the segment tree // Node starts beginning index // of current subtree. start and end // are indexes in arr[] which is global static void build( int node, int start, int end) { // If there is only one element // in current subarray if (start == end) { tree[node] = arr[start]; return ; } int mid = (start + end) / 2 ; // build left and right segments build( 2 * node, start, mid); build( 2 * node + 1 , mid + 1 , end); // build the parent int left_lcm = tree[ 2 * node]; int right_lcm = tree[ 2 * node + 1 ]; tree[node] = lcm(left_lcm, right_lcm); } // Function to make queries for // array range )l, r). Node is index // of root of current segment in segment // tree (Note that indexes in segment // tree begin with 1 for simplicity). // start and end are indexes of subarray // covered by root of current segment. static int query( int node, int start, int end, int l, int r) { // Completely outside the segment, returning // 1 will not affect the lcm; if (end < l || start > r) { return 1 ; } // completely inside the segment if (l <= start && r >= end) { return tree[node]; } // partially inside int mid = (start + end) / 2 ; int left_lcm = query( 2 * node, start, mid, l, r); int right_lcm = query( 2 * node + 1 , mid + 1 , end, l, r); return lcm(left_lcm, right_lcm); } // Driver code public static void main(String[] args) { // initialize the array arr[ 0 ] = 5 ; arr[ 1 ] = 7 ; arr[ 2 ] = 5 ; arr[ 3 ] = 2 ; arr[ 4 ] = 10 ; arr[ 5 ] = 12 ; arr[ 6 ] = 11 ; arr[ 7 ] = 17 ; arr[ 8 ] = 14 ; arr[ 9 ] = 1 ; arr[ 10 ] = 44 ; // build the segment tree build( 1 , 0 , 10 ); // Now we can answer each query efficiently // Print LCM of (2, 5) System.out.println(query( 1 , 0 , 10 , 2 , 5 )); // Print LCM of (5, 10) System.out.println(query( 1 , 0 , 10 , 5 , 10 )); // Print LCM of (0, 10) System.out.println(query( 1 , 0 , 10 , 0 , 10 )); } } // This code is contributed by 29AjayKumar |
Python3
# LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [ 0 ] * ( 4 * MAX ) # declaring the array globally arr = [ 0 ] * MAX # Function to return gcd of a and b def gcd(a: int , b: int ): if a = = 0 : return b return gcd(b % a, a) # utility function to find lcm def lcm(a: int , b: int ): return (a * b) / / gcd(a, b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int , start: int , end: int ): # If there is only one element # in current subarray if start = = end: tree[node] = arr[start] return mid = (start + end) / / 2 # build left and right segments build( 2 * node, start, mid) build( 2 * node + 1 , mid + 1 , end) # build the parent left_lcm = tree[ 2 * node] right_lcm = tree[ 2 * node + 1 ] tree[node] = lcm(left_lcm, right_lcm) # Function to make queries for array range )l, r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int , start: int , end: int , l: int , r: int ): # Completely outside the segment, # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l < = start and r > = end: return tree[node] # partially inside mid = (start + end) / / 2 left_lcm = query( 2 * node, start, mid, l, r) right_lcm = query( 2 * node + 1 , mid + 1 , end, l, r) return lcm(left_lcm, right_lcm) # Driver Code if __name__ = = "__main__" : # initialize the array arr[ 0 ] = 5 arr[ 1 ] = 7 arr[ 2 ] = 5 arr[ 3 ] = 2 arr[ 4 ] = 10 arr[ 5 ] = 12 arr[ 6 ] = 11 arr[ 7 ] = 17 arr[ 8 ] = 14 arr[ 9 ] = 1 arr[ 10 ] = 44 # build the segment tree build( 1 , 0 , 10 ) # Now we can answer each query efficiently # Print LCM of (2, 5) print (query( 1 , 0 , 10 , 2 , 5 )) # Print LCM of (5, 10) print (query( 1 , 0 , 10 , 5 , 10 )) # Print LCM of (0, 10) print (query( 1 , 0 , 10 , 0 , 10 )) # This code is contributed by # sanjeev2552 |
C#
// LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG { static readonly int MAX = 1000; // allocate space for tree static int [] tree = new int [4 * MAX]; // declaring the array globally static int [] arr = new int [MAX]; // Function to return gcd of a and b static int gcd( int a, int b) { if (a == 0) { return b; } return gcd(b % a, a); } // utility function to find lcm static int lcm( int a, int b) { return a * b / gcd(a, b); } // Function to build the segment tree // Node starts beginning index // of current subtree. start and end // are indexes in []arr which is global static void build( int node, int start, int end) { // If there is only one element // in current subarray if (start == end) { tree[node] = arr[start]; return ; } int mid = (start + end) / 2; // build left and right segments build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm, right_lcm); } // Function to make queries for // array range )l, r). Node is index // of root of current segment in segment // tree (Note that indexes in segment // tree begin with 1 for simplicity). // start and end are indexes of subarray // covered by root of current segment. static int query( int node, int start, int end, int l, int r) { // Completely outside the segment, // returning 1 will not affect the lcm; if (end < l || start > r) { return 1; } // completely inside the segment if (l <= start && r >= end) { return tree[node]; } // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node, start, mid, l, r); int right_lcm = query(2 * node + 1, mid + 1, end, l, r); return lcm(left_lcm, right_lcm); } // Driver code public static void Main(String[] args) { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1, 0, 10); // Now we can answer each query efficiently // Print LCM of (2, 5) Console.WriteLine(query(1, 0, 10, 2, 5)); // Print LCM of (5, 10) Console.WriteLine(query(1, 0, 10, 5, 10)); // Print LCM of (0, 10) Console.WriteLine(query(1, 0, 10, 0, 10)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a, b) { if (a == 0) return b; return gcd(b%a, a); } //utility function to find lcm function lcm(a, b) { return Math.floor(a*b/gcd(a,b)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node, start, end) { // If there is only one element in current subarray if (start==end) { tree[node] = arr[start]; return ; } let mid = Math.floor((start+end)/2); // build left and right segments build(2*node, start, mid); build(2*node+1, mid+1, end); // build the parent let left_lcm = tree[2*node]; let right_lcm = tree[2*node+1]; tree[node] = lcm(left_lcm, right_lcm); } // Function to make queries for array range )l, r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node, start, end, l, r) { // Completely outside the segment, returning // 1 will not affect the lcm; if (end<l || start>r) return 1; // completely inside the segment if (l<=start && r>=end) return tree[node]; // partially inside let mid = Math.floor((start+end)/2); let left_lcm = query(2*node, start, mid, l, r); let right_lcm = query(2*node+1, mid+1, end, l, r); return lcm(left_lcm, right_lcm); } //driver function to check the above program //initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1, 0, 10); // Now we can answer each query efficiently // Print LCM of (2, 5) document.write(query(1, 0, 10, 2, 5) + "<br>" ); // Print LCM of (5, 10) document.write(query(1, 0, 10, 5, 10) + "<br>" ); // Print LCM of (0, 10) document.write(query(1, 0, 10, 0, 10) + "<br>" ); // This code is contributed by Manoj. </script> |
60 15708 78540
Time Complexity: O(Log N * Log n) where N is the number of elements in the array. The other log n denotes the time required for finding the LCM. This time complexity is for each query. The total time complexity is O(N + Q*Log N*log n), this is because O(N) time is required to build the tree and then to answer the queries.
Auxiliary Space: O(N), where N is the number of elements in the array. This space is required for storing the segment tree.
Related Topic: Segment Tree
This article is contributed by Ashutosh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...