Queries to count minimum flips required to fill a binary submatrix with 0s only
Given a binary matrix mat[][] of size M * N and Q queries of the form {pi, pj, qi, qj}, the task for each query is to count the number of 0s in the submatrix from the cell (pi, pj) to (qi, qj).
Examples:
Input: mat[][] = {{0, 1, 0, 1, 1, 1, 0}, {1, 0, 1, 1, 1, 0, 1}, {1, 1, 0, 0, 1, 1, 0}, {1, 1, 1, 1, 1, 0, 1}, {0, 0, 1, 0, 1, 1, 1}, {1, 1, 0, 1, 1, 0, 1 }}, Q[] = {{0, 1, 3, 2}, {2, 2, 4, 5}, {4, 3, 5, 6}}
Output: 3 4 2
Explanation:
The submatrix from indices (0, 1) to (3, 2) contains 3 0s.
The submatrix from indices (2, 2) to (4, 5) contains 4 0s.
The submatrix from indices (4, 3) to (5, 6) contains 2 0s.Input: mat[][] = {{0, 1, 0}, {1, 0, 1}}, Q[] = {{0, 0, 2, 2}}
Output: 3
Naive Approach: The simplest approach to solve the problem is to count the number of 0s for each query by iterating the submatrix and print the count for each query.
Time Complexity: O(M*N*Q)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to preprocess the given matrix mat[][]. Create a count matrix, say prefixCnt[M][N], such that prefix_cnt[i][j] stores the count of 0s in the submatrix within indices (0, 0) to (i, j). Follow the steps below to compute prefixCnt[][]:
- Initialize prefixCnt[i][j] with 1 if mat[i][j] is 0. Otherwise, initialize with 0.
- Find the prefix sum for each row and column and update the matrix accordingly.
Once, matrix prefixCnt[][] is computed the count of 0s in any sub-matrix can be evaluated in O(1) time. Below is the expression to count the 0s in each submatrix from (pi, pj) to (qi, qj) can be calculated by:
cnt = prefixCnt[qi][qj] – prefixCnt[pi-1][qj] – prefixCnt[qi][pj – 1] + prefixCnt[pi – 1][pj – 1]
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define M 6 #define N 7 // Function to compute the matrix // prefixCnt[M][N] from mat[M][N] such // that prefixCnt[i][j] stores the // count of 0's from (0, 0) to (i, j) void preCompute( int mat[M][N], int prefixCnt[M][N]) { for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) { // Initialize prefixCnt[i][j] // with 1 if mat[i][j] is 0 if (mat[i][j] == 0) { prefixCnt[i][j] = 1; } // Otherwise, assign with 0 else { prefixCnt[i][j] = 0; } } } // Calculate prefix sum for each row for ( int i = 0; i < M; i++) for ( int j = 1; j < N; j++) prefixCnt[i][j] += prefixCnt[i][j - 1]; // Calculate prefix sum for each column for ( int i = 1; i < M; i++) for ( int j = 0; j < N; j++) prefixCnt[i][j] += prefixCnt[i - 1][j]; } // Function to compute count of 0's // in submatrix from (pi, pj) to // (qi, qj) from prefixCnt[M][N] int countQuery( int prefixCnt[M][N], int pi, int pj, int qi, int qj) { // Initialize that count of 0's // in the sub-matrix within // indices (0, 0) to (qi, qj) int cnt = prefixCnt[qi][qj]; // Subtract count of 0's within // indices (0, 0) and (pi-1, qj) if (pi > 0) cnt -= prefixCnt[pi - 1][qj]; // Subtract count of 0's within // indices (0, 0) and (qi, pj-1) if (pj > 0) cnt -= prefixCnt[qi][pj - 1]; // Add prefixCnt[pi - 1][pj - 1] // because its value has been added // once but subtracted twice if (pi > 0 && pj > 0) cnt += prefixCnt[pi - 1][pj - 1]; return cnt; } // Function to count the 0s in the // each given submatrix void count0s( int mat[M][N], int Q[][4], int sizeQ) { // Stores the prefix sum of each // row and column int prefixCnt[M][N]; // Compute matrix prefixCnt[][] preCompute(mat, prefixCnt); for ( int i = 0; i < sizeQ; i++) { // Function Call for each query cout << countQuery(prefixCnt, Q[i][0], Q[i][1], Q[i][2], Q[i][3]) << ' ' ; } } // Driver Code int main() { // Given matrix int mat[M][N] = { { 0, 1, 0, 1, 1, 1, 0 }, { 1, 0, 1, 1, 1, 0, 1 }, { 1, 1, 0, 0, 1, 1, 0 }, { 1, 1, 1, 1, 1, 0, 1 }, { 0, 0, 1, 0, 1, 1, 1 }, { 1, 1, 0, 1, 1, 0, 1 } }; int Q[][4] = { { 0, 1, 3, 2 }, { 2, 2, 4, 5 }, { 4, 3, 5, 6 } }; int sizeQ = sizeof (Q) / sizeof (Q[0]); // Function Call count0s(mat, Q, sizeQ); return 0; } |
Java
// Java program for the above approach class GFG{ final static int M = 6 ; final static int N = 7 ; // Function to compute the matrix // prefixCnt[M][N] from mat[M][N] such // that prefixCnt[i][j] stores the // count of 0's from (0, 0) to (i, j) static void preCompute( int mat[][], int prefixCnt[][]) { for ( int i = 0 ; i < M; i++) { for ( int j = 0 ; j < N; j++) { // Initialize prefixCnt[i][j] // with 1 if mat[i][j] is 0 if (mat[i][j] == 0 ) { prefixCnt[i][j] = 1 ; } // Otherwise, assign with 0 else { prefixCnt[i][j] = 0 ; } } } // Calculate prefix sum for each row for ( int i = 0 ; i < M; i++) for ( int j = 1 ; j < N; j++) prefixCnt[i][j] += prefixCnt[i][j - 1 ]; // Calculate prefix sum for each column for ( int i = 1 ; i < M; i++) for ( int j = 0 ; j < N; j++) prefixCnt[i][j] += prefixCnt[i - 1 ][j]; } // Function to compute count of 0's // in submatrix from (pi, pj) to // (qi, qj) from prefixCnt[M][N] static int countQuery( int prefixCnt[][], int pi, int pj, int qi, int qj) { // Initialize that count of 0's // in the sub-matrix within // indices (0, 0) to (qi, qj) int cnt = prefixCnt[qi][qj]; // Subtract count of 0's within // indices (0, 0) and (pi-1, qj) if (pi > 0 ) cnt -= prefixCnt[pi - 1 ][qj]; // Subtract count of 0's within // indices (0, 0) and (qi, pj-1) if (pj > 0 ) cnt -= prefixCnt[qi][pj - 1 ]; // Add prefixCnt[pi - 1][pj - 1] // because its value has been added; // once but subtracted twice if (pi > 0 && pj > 0 ) cnt += prefixCnt[pi - 1 ][pj - 1 ]; return cnt; } // Function to count the 0s in the // each given submatrix static void count0s( int mat[][], int Q[][], int sizeQ) { // Stores the prefix sum of each // row and column int prefixCnt[][] = new int [M][N]; // Compute matrix prefixCnt[][] preCompute(mat, prefixCnt); for ( int i = 0 ; i < sizeQ; i++) { // Function Call for each query System.out.print(countQuery(prefixCnt, Q[i][ 0 ], Q[i][ 1 ], Q[i][ 2 ], Q[i][ 3 ]) + " " ); } } // Driver Code public static void main (String[] args) { // Given matrix int mat[][] = { { 0 , 1 , 0 , 1 , 1 , 1 , 0 }, { 1 , 0 , 1 , 1 , 1 , 0 , 1 }, { 1 , 1 , 0 , 0 , 1 , 1 , 0 }, { 1 , 1 , 1 , 1 , 1 , 0 , 1 }, { 0 , 0 , 1 , 0 , 1 , 1 , 1 }, { 1 , 1 , 0 , 1 , 1 , 0 , 1 } }; int Q[][] = { { 0 , 1 , 3 , 2 }, { 2 , 2 , 4 , 5 }, { 4 , 3 , 5 , 6 } }; int sizeQ = Q.length; // Function Call count0s(mat, Q, sizeQ); } } // This code is contributed by AnkThon |
Python3
# Python3 program for the above approach M = 6 N = 7 # Function to compute the matrix # prefixCnt[M][N] from mat[M][N] such # that prefixCnt[i][j] stores the # count of 0's from (0, 0) to (i, j) def preCompute(mat, prefixCnt): for i in range (M): for j in range (N): # Initialize prefixCnt[i][j] # with 1 if mat[i][j] is 0 if (mat[i][j] = = 0 ): prefixCnt[i][j] = 1 # Otherwise, assign with 0 else : prefixCnt[i][j] = 0 # Calculate prefix sum for each row for i in range (M): for j in range ( 1 , N): prefixCnt[i][j] + = prefixCnt[i][j - 1 ] # Calculate prefix sum for each column for i in range ( 1 , M): for j in range (N): prefixCnt[i][j] + = prefixCnt[i - 1 ][j] return prefixCnt # Function to compute count of 0's # in submatrix from (pi, pj) to # (qi, qj) from prefixCnt[M][N] def countQuery(prefixCnt, pi, pj, qi, qj): # Initialize that count of 0's # in the sub-matrix within # indices (0, 0) to (qi, qj) cnt = prefixCnt[qi][qj] # Subtract count of 0's within # indices (0, 0) and (pi-1, qj) if (pi > 0 ): cnt - = prefixCnt[pi - 1 ][qj] # Subtract count of 0's within # indices (0, 0) and (qi, pj-1) if (pj > 0 ): cnt - = prefixCnt[qi][pj - 1 ] # Add prefixCnt[pi - 1][pj - 1] # because its value has been added # once but subtracted twice if (pi > 0 and pj > 0 ): cnt + = prefixCnt[pi - 1 ][pj - 1 ] return cnt # Function to count the 0s in the # each given submatrix def count0s(mat, Q, sizeQ): # Stores the prefix sum of each # row and column prefixCnt = [[ 0 for i in range (N)] for i in range (M)] # Compute matrix prefixCnt[][] prefixCnt = preCompute(mat, prefixCnt) for i in range (sizeQ): # Function Call for each query print (countQuery(prefixCnt, Q[i][ 0 ], Q[i][ 1 ], Q[i][ 2 ], Q[i][ 3 ]), end = " " ) # Driver Code if __name__ = = '__main__' : # Given matrix mat = [[ 0 , 1 , 0 , 1 , 1 , 1 , 0 ], [ 1 , 0 , 1 , 1 , 1 , 0 , 1 ], [ 1 , 1 , 0 , 0 , 1 , 1 , 0 ], [ 1 , 1 , 1 , 1 , 1 , 0 , 1 ], [ 0 , 0 , 1 , 0 , 1 , 1 , 1 ], [ 1 , 1 , 0 , 1 , 1 , 0 , 1 ] ] Q = [ [ 0 , 1 , 3 , 2 ], [ 2 , 2 , 4 , 5 ], [ 4 , 3 , 5 , 6 ] ] sizeQ = len (Q) # Function Call count0s(mat, Q, sizeQ) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG { static int M = 6; static int N = 7; // Function to compute the matrix // prefixCnt[M][N] from mat[M][N] such // that prefixCnt[i][j] stores the // count of 0's from (0, 0) to (i, j) static void preCompute( int [,]mat, int [,]prefixCnt) { for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) { // Initialize prefixCnt[i][j] // with 1 if mat[i,j] is 0 if (mat[i, j] == 0) { prefixCnt[i, j] = 1; } // Otherwise, assign with 0 else { prefixCnt[i, j] = 0; } } } // Calculate prefix sum for each row for ( int i = 0; i < M; i++) for ( int j = 1; j < N; j++) prefixCnt[i, j] += prefixCnt[i, j - 1]; // Calculate prefix sum for each column for ( int i = 1; i < M; i++) for ( int j = 0; j < N; j++) prefixCnt[i, j] += prefixCnt[i - 1, j]; } // Function to compute count of 0's // in submatrix from (pi, pj) to // (qi, qj) from prefixCnt[M][N] static int countQuery( int [,]prefixCnt, int pi, int pj, int qi, int qj) { // Initialize that count of 0's // in the sub-matrix within // indices (0, 0) to (qi, qj) int cnt = prefixCnt[qi, qj]; // Subtract count of 0's within // indices (0, 0) and (pi-1, qj) if (pi > 0) cnt -= prefixCnt[pi - 1, qj]; // Subtract count of 0's within // indices (0, 0) and (qi, pj-1) if (pj > 0) cnt -= prefixCnt[qi, pj - 1]; // Add prefixCnt[pi - 1][pj - 1] // because its value has been added; // once but subtracted twice if (pi > 0 && pj > 0) cnt += prefixCnt[pi - 1, pj - 1]; return cnt; } // Function to count the 0s in the // each given submatrix static void count0s( int [,]mat, int [,]Q, int sizeQ) { // Stores the prefix sum of each // row and column int [,]prefixCnt = new int [M, N]; // Compute matrix prefixCnt[,] preCompute(mat, prefixCnt); for ( int i = 0; i < sizeQ; i++) { // Function Call for each query Console.Write(countQuery(prefixCnt, Q[i, 0], Q[i, 1], Q[i, 2], Q[i, 3]) + " " ); } } // Driver Code public static void Main( string [] args) { // Given matrix int [,]mat = { { 0, 1, 0, 1, 1, 1, 0 }, { 1, 0, 1, 1, 1, 0, 1 }, { 1, 1, 0, 0, 1, 1, 0 }, { 1, 1, 1, 1, 1, 0, 1 }, { 0, 0, 1, 0, 1, 1, 1 }, { 1, 1, 0, 1, 1, 0, 1 } }; int [,]Q = { { 0, 1, 3, 2 }, { 2, 2, 4, 5 }, { 4, 3, 5, 6 } }; int sizeQ = Q.GetLength(0); // Function Call count0s(mat, Q, sizeQ); } } // This code is contributed by AnkThon |
Javascript
<script> // javascript program of the above approach let M = 6; let N = 7; // Function to compute the matrix // prefixCnt[M][N] from mat[M][N] such // that prefixCnt[i][j] stores the // count of 0's from (0, 0) to (i, j) function preCompute(mat, prefixCnt) { for (let i = 0; i < M; i++) { for (let j = 0; j < N; j++) { // Initialize prefixCnt[i][j] // with 1 if mat[i][j] is 0 if (mat[i][j] == 0) { prefixCnt[i][j] = 1; } // Otherwise, assign with 0 else { prefixCnt[i][j] = 0; } } } // Calculate prefix sum for each row for (let i = 0; i < M; i++) for (let j = 1; j < N; j++) prefixCnt[i][j] += prefixCnt[i][j - 1]; // Calculate prefix sum for each column for (let i = 1; i < M; i++) for (let j = 0; j < N; j++) prefixCnt[i][j] += prefixCnt[i - 1][j]; } // Function to compute count of 0's // in submatrix from (pi, pj) to // (qi, qj) from prefixCnt[M][N] function countQuery(prefixCnt, pi, pj, qi, qj) { // Initialize that count of 0's // in the sub-matrix within // indices (0, 0) to (qi, qj) let cnt = prefixCnt[qi][qj]; // Subtract count of 0's within // indices (0, 0) and (pi-1, qj) if (pi > 0) cnt -= prefixCnt[pi - 1][qj]; // Subtract count of 0's within // indices (0, 0) and (qi, pj-1) if (pj > 0) cnt -= prefixCnt[qi][pj - 1]; // Add prefixCnt[pi - 1][pj - 1] // because its value has been added; // once but subtracted twice if (pi > 0 && pj > 0) cnt += prefixCnt[pi - 1][pj - 1]; return cnt; } // Function to count the 0s in the // each given submatrix function count0s(mat, Q, sizeQ) { // Stores the prefix sum of each // row and column let prefixCnt = new Array(M); // Loop to create 2D array using 1D array for ( var i = 0; i < prefixCnt.length; i++) { prefixCnt[i] = new Array(2); } // Compute matrix prefixCnt[][] preCompute(mat, prefixCnt); for (let i = 0; i < sizeQ; i++) { // Function Call for each query document.write(countQuery(prefixCnt, Q[i][0], Q[i][1], Q[i][2], Q[i][3]) + " " ); } } // Driver Code // Given matrix let mat = [[ 0, 1, 0, 1, 1, 1, 0 ], [ 1, 0, 1, 1, 1, 0, 1 ], [ 1, 1, 0, 0, 1, 1, 0 ], [ 1, 1, 1, 1, 1, 0, 1 ], [ 0, 0, 1, 0, 1, 1, 1 ], [ 1, 1, 0, 1, 1, 0, 1 ]]; let Q = [[ 0, 1, 3, 2 ], [ 2, 2, 4, 5 ], [ 4, 3, 5, 6 ]]; let sizeQ = Q.length; // Function Call count0s(mat, Q, sizeQ); // This code is contributed by target_2. </script> |
3 4 2
Time Complexity: O(M*N + Q)
Auxiliary Space: O(M*N)
Please Login to comment...