Queries to check whether all the elements in the given range occurs even number of times
Given an array arr[] containing N integers and there are Q queries where each query consists of a range [L, R]. The task is to find whether all the elements from the given index range have even frequency or not.
Examples:
Input: arr[] = {1, 1, 2, 2, 1}, Q[][] = {{1, 5}, {1, 4}, {3, 4}}
Output:
No
Yes
Yes
Input: arr[] = {100, 100, 200, 100}, Q[][] = {{1, 4}, {1, 2}}
Output:
No
Yes
Naive approach: A simple approach will be to iterate from the index range [L, R] for each of the query and count the frequency of each element in that range and check that every element is occurring even number of times or not. The worst case time complexity of this approach will be O(Q * N) where Q is the number of queries and N is the number of elements in the array.
Efficient approach: Since XOR of two equal number is 0 i.e. if all the elements of the array appears even number of times then the XOR of the complete array will be 0. The same can be said about the elements in the given range [L, R]. Now, to check if the XOR of all the elements in the given range is 0 or not, a prefix XOR array can be created where preXor[i] will store the XOR of the elements arr[0…i]. And the XOR of the elements arr[i…j] can be easily calculated as preXor[j] ^ preXor[i – 1].
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to perform the given queries void performQueries(vector< int >& A, vector<pair< int , int > >& q) { int n = ( int )A.size(); // Making array 1-indexed A.insert(A.begin(), 0); // To store the cumulative xor vector< int > pref_xor(n + 1, 0); // Taking cumulative Xor for ( int i = 1; i <= n; ++i) { pref_xor[i] = pref_xor[i - 1] ^ A[i]; } // Iterating over the queries for ( auto i : q) { int L = i.first, R = i.second; if (L > R) swap(L, R); // If both indices are different and xor // in the range [L, R] is 0 if (L != R and pref_xor[R] == pref_xor[L - 1]) cout << "Yes\n" ; else cout << "No\n" ; } } // Driver code int main() { vector< int > Arr = { 1, 1, 2, 2, 1 }; vector<pair< int , int > > q = { { 1, 5 }, { 1, 4 }, { 3, 4 } }; performQueries(Arr, q); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to perform the given queries static void performQueries( int []A, pair[] q) { int n = A.length; // To store the cumulative xor int []pref_xor = new int [n + 1 ]; // Taking cumulative Xor for ( int i = 1 ; i <=n; ++i) { pref_xor[i] = pref_xor[i - 1 ] ^ A[i - 1 ]; } // Iterating over the queries for (pair i : q) { int L = i.first, R = i.second; if (L > R) { int temp = L; L = R; R = temp; } // If both indices are different and xor // in the range [L, R] is 0 if (L != R && pref_xor[R] == pref_xor[L - 1 ]) System.out.println( "Yes" ); else System.out.println( "No" ); } } // Driver code static public void main (String []arg) { int []Arr = { 1 , 1 , 2 , 2 , 1 }; pair[] q = { new pair( 1 , 5 ), new pair( 1 , 4 ), new pair( 3 , 4 ) }; performQueries(Arr, q); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to perform the given queries def performQueries(A, q): n = len (A) # To store the cumulative xor pref_xor = [ 0 for i in range (n + 1 )] # Taking cumulative Xor for i in range ( 1 , n + 1 ): pref_xor[i] = pref_xor[i - 1 ] ^ A[i - 1 ] # Iterating over the queries for i in q: L = i[ 0 ] R = i[ 1 ] if (L > R): L, R = R, L # If both indices are different and # xor in the range [L, R] is 0 if (L ! = R and pref_xor[R] = = pref_xor[L - 1 ]): print ( "Yes" ) else : print ( "No" ) # Driver code Arr = [ 1 , 1 , 2 , 2 , 1 ] q = [[ 1 , 5 ], [ 1 , 4 ], [ 3 , 4 ]] performQueries(Arr, q); # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; class GFG { public class pair { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to perform the given queries static void performQueries( int []A, pair[] q) { int n = A.Length; // To store the cumulative xor int []pref_xor = new int [n + 1]; // Taking cumulative Xor for ( int i = 1; i <= n; ++i) { pref_xor[i] = pref_xor[i - 1] ^ A[i - 1]; } // Iterating over the queries foreach (pair k in q) { int L = k.first, R = k.second; if (L > R) { int temp = L; L = R; R = temp; } // If both indices are different and xor // in the range [L, R] is 0 if (L != R && pref_xor[R] == pref_xor[L - 1]) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // Driver code static public void Main (String []arg) { int []Arr = { 1, 1, 2, 2, 1 }; pair[] q = { new pair(1, 5 ), new pair(1, 4 ), new pair(3, 4 )}; performQueries(Arr, q); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Function to perform the given queries function performQueries(A, q) { let n = A.length // To store the cumulative xor let pref_xor = new Array(n + 1).fill(0) // Taking cumulative Xor for (let i = 1; i < n + 1; i++) { pref_xor[i] = pref_xor[i - 1] ^ A[i - 1] } // Iterating over the queries for (let i in q) { let L = i[0] let R = i[1]; if (L > R) { let temp = R; R = L; L = temp } // If both indices are different and // xor in the range [L, R] is 0 if ((L != R) && (pref_xor[R] == pref_xor[L - 1])) document.write( "No<br>" ) else document.write( "Yes<br>" ) } } // Driver code let Arr = [1, 1, 2, 2, 1] let q = [[1, 5], [1, 4], [3, 4]] performQueries(Arr, q); // This code is contributed by gfgking </script> |
No Yes Yes
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...