Queries for the count of even digit sum elements in the given range using Segment Tree.
Given an array arr[] of N elements, the task is to answer Q queries each having two integers L and R. For each query, the task is to find the number of elements in the subarray arr[L…R] whose digit sum is even.
Examples:
Input: arr[] = {7, 3, 19, 13, 5, 4}
query = { 1, 5 }
Output: 3
Explanation:
Elements 19, 13 and 4 have even digit sum
in the subarray {3, 9, 13, 5, 4}.
Input: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}
query = { 3, 5 }
Output: 1
Explanation:
Only 4 has even digit sum
in the subarray {3, 4, 5}.
Naive approach:
- Find the answer for each query by simply traversing the array from index L till R and keep adding 1 to the count whenever the array element has even digit sum. Time Complexity of this approach will be O(n * q).
Efficient approach:
The idea is to build a Segment Tree.
- Representation of Segment trees:
- Leaf Nodes are the elements of the input array.
- Each internal node contains the number of leaves which has even digit sum of all leaves under it.
- Leaf Nodes are the elements of the input array.
- Construction of Segment Tree from given array:
- We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(if it has not yet become a segment of length 1) and then call the same procedure on both halves and for each such segment, we store the number of elements which has even digit sum of all nodes under it.
- We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(if it has not yet become a segment of length 1) and then call the same procedure on both halves and for each such segment, we store the number of elements which has even digit sum of all nodes under it.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the digit sum // for a number int digitSum( int num) { int sum = 0; while (num) { sum += (num % 10); num /= 10; } return sum; } // Procedure to build the segment tree void buildTree(vector< int >& tree, int * arr, int index, int s, int e) { // Reached the leaf node // of the segment tree if (s == e) { if (digitSum(arr[s]) & 1) tree[index] = 0; else tree[index] = 1; return ; } // Recursively call the buildTree // on both the nodes of the tree int mid = (s + e) / 2; buildTree(tree, arr, 2 * index, s, mid); buildTree(tree, arr, 2 * index + 1, mid + 1, e); tree[index] = tree[2 * index] + tree[2 * index + 1]; } // Query procedure to get the answer // for each query l and r are // query range int query(vector< int > tree, int index, int s, int e, int l, int r) { // Out of bound or no overlap if (r < s || l > e) return 0; // Complete overlap // Query range completely lies in // the segment tree node range if (s >= l && e <= r) { return tree[index]; } // Partially overlap // Query range partially lies in // the segment tree node range int mid = (s + e) / 2; return (query(tree, 2 * index, s, mid, l, r) + query(tree, 2 * index + 1, mid + 1, e, l, r)); } // Driver code int main() { int arr[] = { 7, 3, 19, 13, 5, 4 }; int n = sizeof (arr) / sizeof (arr[0]); vector< int > tree(4 * n + 1); int L = 1, R = 5; buildTree(tree, arr, 1, 0, n - 1); cout << query(tree, 1, 0, n - 1, L, R) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG{ // Function to find the digit sum // for a number static int digitSum( int num) { int sum = 0 ; while (num > 0 ) { sum += (num % 10 ); num /= 10 ; } return sum; } // Procedure to build the segment tree static void buildTree( int []tree, int []arr, int index, int s, int e) { // Reached the leaf node // of the segment tree if (s == e) { if (digitSum(arr[s]) % 2 == 1 ) tree[index] = 0 ; else tree[index] = 1 ; return ; } // Recursively call the buildTree // on both the nodes of the tree int mid = (s + e) / 2 ; buildTree(tree, arr, 2 * index, s, mid); buildTree(tree, arr, 2 * index + 1 , mid + 1 , e); tree[index] = tree[ 2 * index] + tree[ 2 * index + 1 ]; } // Query procedure to get the answer // for each query l and r are // query range static int query( int []tree, int index, int s, int e, int l, int r) { // Out of bound or no overlap if (r < s || l > e) return 0 ; // Complete overlap // Query range completely lies in // the segment tree node range if (s >= l && e <= r) { return tree[index]; } // Partially overlap // Query range partially lies in // the segment tree node range int mid = (s + e) / 2 ; return (query(tree, 2 * index, s, mid, l, r) + query(tree, 2 * index + 1 , mid + 1 , e, l, r)); } // Driver code public static void main(String[] args) { int arr[] = { 7 , 3 , 19 , 13 , 5 , 4 }; int n = arr.length; int []tree = new int [ 4 * n + 1 ]; int L = 1 , R = 5 ; buildTree(tree, arr, 1 , 0 , n - 1 ); System.out.print(query(tree, 1 , 0 , n - 1 , L, R) + "\n" ); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 implementation of the above approach # Function to find the digit sum # for a number def digitSum(num): sum = 0 ; while (num): sum + = (num % 10 ) num / / = 10 return sum # Procedure to build the segment tree def buildTree(tree, arr, index, s, e): # Reached the leaf node # of the segment tree if (s = = e): if (digitSum(arr[s]) & 1 ): tree[index] = 0 else : tree[index] = 1 return # Recursively call the buildTree # on both the nodes of the tree mid = (s + e) / / 2 buildTree(tree, arr, 2 * index, s, mid) buildTree(tree, arr, 2 * index + 1 , mid + 1 , e) tree[index] = (tree[ 2 * index] + tree[ 2 * index + 1 ]) # Query procedure to get the answer # for each query l and r are # query range def query(tree, index, s, e, l, r): # Out of bound or no overlap if (r < s or l > e): return 0 # Complete overlap # Query range completely lies in # the segment tree node range if (s > = l and e < = r): return tree[index] # Partially overlap # Query range partially lies in # the segment tree node range mid = (s + e) / / 2 return (query(tree, 2 * index, s, mid, l, r) + query(tree, 2 * index + 1 , mid + 1 , e, l, r)) # Driver code arr = [ 7 , 3 , 19 , 13 , 5 , 4 ] n = len (arr) tree = [ 0 ] * ( 4 * n + 1 ) L = 1 R = 5 buildTree(tree, arr, 1 , 0 , n - 1 ); print (query(tree, 1 , 0 , n - 1 , L, R)) # This code is contributed by Apurvaraj |
C#
// C# implementation of the approach using System; class GFG{ // Function to find the digit sum // for a number static int digitSum( int num) { int sum = 0; while (num > 0) { sum += (num % 10); num /= 10; } return sum; } // Procedure to build the segment tree static void buildTree( int []tree, int []arr, int index, int s, int e) { // Reached the leaf node // of the segment tree if (s == e) { if (digitSum(arr[s]) % 2 == 1) tree[index] = 0; else tree[index] = 1; return ; } // Recursively call the buildTree // on both the nodes of the tree int mid = (s + e) / 2; buildTree(tree, arr, 2 * index, s, mid); buildTree(tree, arr, 2 * index + 1, mid + 1, e); tree[index] = tree[2 * index] + tree[2 * index + 1]; } // Query procedure to get the answer // for each query l and r are // query range static int query( int []tree, int index, int s, int e, int l, int r) { // Out of bound or no overlap if (r < s || l > e) return 0; // Complete overlap // Query range completely lies in // the segment tree node range if (s >= l && e <= r) { return tree[index]; } // Partially overlap // Query range partially lies in // the segment tree node range int mid = (s + e) / 2; return (query(tree, 2 * index, s, mid, l, r) + query(tree, 2 * index + 1, mid + 1, e, l, r)); } // Driver code public static void Main(String[] args) { int []arr = { 7, 3, 19, 13, 5, 4 }; int n = arr.Length; int []tree = new int [4 * n + 1]; int L = 1, R = 5; buildTree(tree, arr, 1, 0, n - 1); Console.Write(query(tree, 1, 0, n - 1, L, R) + "\n" ); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // JavaScript implementation of the approach // Function to find the digit sum // for a number function digitSum(num) { var sum = 0; while (num > 0) { sum += parseInt(num % 10); num = parseInt(num / 10); } return sum; } // Procedure to build the segment tree function buildTree(tree, arr, index, s, e) { // Reached the leaf node // of the segment tree if (s === e) { if (digitSum(arr[s]) % 2 === 1) tree[index] = 0; else tree[index] = 1; return ; } // Recursively call the buildTree // on both the nodes of the tree var mid = parseInt((s + e) / 2); buildTree(tree, arr, 2 * index, s, mid); buildTree(tree, arr, 2 * index + 1, mid + 1, e); tree[index] = tree[2 * index] + tree[2 * index + 1]; } // Query procedure to get the answer // for each query l and r are // query range function query(tree, index, s, e, l, r) { // Out of bound or no overlap if (r < s || l > e) return 0; // Complete overlap // Query range completely lies in // the segment tree node range if (s >= l && e <= r) { return tree[index]; } // Partially overlap // Query range partially lies in // the segment tree node range var mid = (s + e) / 2; return ( query(tree, 2 * index, s, mid, l, r) + query(tree, 2 * index + 1, mid + 1, e, l, r) ); } // Driver code var arr = [7, 3, 19, 13, 5, 4]; var n = arr.length; var tree = new Array(4 * n + 1).fill(0); var L = 1, R = 5; buildTree(tree, arr, 1, 0, n - 1); document.write(query(tree, 1, 0, n - 1, L, R) + "<br>" ); </script> |
Output:
3
Time complexity: O(Q * log(N))
Please Login to comment...