Skip to content
Related Articles

Related Articles

Python – tensorflow.raw_ops.Cosh()

Improve Article
Save Article
  • Last Updated : 05 Jun, 2020
Improve Article
Save Article

TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning  neural networks. TensorFlow raw_ops provides low level access to all TensorFlow operations. Cosh() is used to find element wise hyperbolic cosine of x.

Syntax: tf.raw_ops.Cosh(x, name)

Parameters: 

  • x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64. 
  • name(optional): It’s defines the name for the operation.
     

Returns:  It returns a tensor of same dtype as x.
 

Note: It only takes keyword arguments.

Example 1:

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
  
# Printing the input tensor
print('Input: ', a)
  
# Calculating hyperbolic cosine
res = tf.raw_ops.Cosh(x = a)
  
# Printing the result
print('Result: ', res)


Output:

Input:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([ 1.54308063  3.76219569 10.067662   27.30823284 74.20994852], shape=(5, ), dtype=float64)


Example 2: Visualization

Python3




# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
  
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
  
# Calculating hyperbolic cosine
res = tf.raw_ops.Cosh(x = a)
  
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Cosh')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()


Output:


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!