Skip to content
Related Articles

Related Articles

Python – tensorflow.math.subtract()

Improve Article
Save Article
  • Last Updated : 16 Jun, 2020
Improve Article
Save Article

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

subtract() is used to compute element wise (x-y).

Syntax: tensorflow.math.subtract(x, y, name)

Parameters:

  • x: It’s a tensor. Allowed dtypes are bfloat16, half, float32, float64, complex64, complex128.
  • y: It’s a tensor of same dtype as x.
  • name(optional): It defines the name for the operation.

Returns: It returns a tensor.

Example 1:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 5, 7], dtype = tf.float64)
b = tf.constant([ 1, 3, 9, 4, 7], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
print('b: ', b)
  
# Calculating result
res = tf.math.subtract(a, b)
  
# Printing the result
print('Result: ', res)


Output:

a:  tf.Tensor([-5. -7.  2.  5.  7.], shape=(5, ), dtype=float64)
b:  tf.Tensor([1. 3. 9. 4. 7.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([ -6. -10.  -7.   1.   0.], shape=(5, ), dtype=float64)



Example 2: Taking complex input

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([ -5 + 3j, -7-2j, 2 + 1j, 5-7j, 7 + 3j], dtype = tf.complex128)
b = tf.constant([ 1 + 5j, 3 + 1j, 9-5j, 4 + 3j, 7-6j], dtype = tf.complex128)
  
# Printing the input tensor
print('a: ', a)
print('b: ', b)
  
# Calculating result
res = tf.math.subtract(a, b)
  
# Printing the result
print('Result: ', res)


Output:

a:  tf.Tensor([-5.+3.j -7.-2.j  2.+1.j  5.-7.j  7.+3.j], shape=(5, ), dtype=complex128)
b:  tf.Tensor([1.+5.j 3.+1.j 9.-5.j 4.+3.j 7.-6.j], shape=(5, ), dtype=complex128)
Result:  tf.Tensor([ -6. -2.j -10. -3.j  -7. +6.j   1.-10.j   0. +9.j], shape=(5, ), dtype=complex128)

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!