Skip to content
Related Articles

Related Articles

Python – tensorflow.math.conj()

Improve Article
Save Article
  • Last Updated : 04 Jun, 2020
Improve Article
Save Article

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.  conj() is used to find element wise complex conjugate of complex input tensor.

Syntax: tensorflow.math.conj(  x, name)

Parameters:

  • x: It’s a tensor and it must have numeric values.
  • name(optional): It’s defines the name for the operation.

Returns:
It return a tensor of same dtype as x.
It will raise TypeError if input is not numeric tensor.
 

Example 1:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([1+5j,3+2j,4+1j],dtype = tf.complex128)
  
# Printing the input tensor
print('a: ',a)
  
# Finding the complex conjugate
res = tf.math.conj(a)
  
# Printing the result
print('Complex Conjugate: ',res)


Output:

a:  tf.Tensor([1.+5.j 3.+2.j 4.+1.j], shape=(3,), dtype=complex128)
Complex Conjugate:  tf.Tensor([1.-5.j 3.-2.j 4.-1.j], shape=(3,), dtype=complex128)

Example 2: This example uses input with dtype float64.

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([1, 2, 3],dtype = tf.float64)
  
# Printing the input tensor
print('a: ',a)
  
# Finding the complex conjugate
res = tf.math.conj(a)
  
# Printing the result
print('Complex Conjugate: ',res)


Output:

a:  tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
Complex Conjugate:  tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!