Skip to content
Related Articles

Related Articles

Python | Pandas.melt()

View Discussion
Improve Article
Save Article
  • Last Updated : 03 Jan, 2022

To make analysis of data in table easier, we can reshape the data into a more computer-friendly form using Pandas in Python. Pandas.melt() is one of the function to do so..
Pandas.melt() unpivots a DataFrame from wide format to long format.
melt() function is useful to message a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are unpivoted to the row axis, leaving just two non-identifier columns, variable and value.
Syntax :

pandas.melt(frame, id_vars=None, value_vars=None,
 var_name=None, value_name='value', col_level=None)


frame : DataFrame
id_vars[tuple, list, or ndarray, optional] : Column(s) to use as identifier variables.
value_vars[tuple, list, or ndarray, optional]: Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
var_name[scalar]: Name to use for the ‘variable’ column. If None it uses or ‘variable’.
value_name[scalar, default ‘value’]: Name to use for the ‘value’ column.
col_level[int or string, optional]: If columns are a MultiIndex then use this level to melt.



# Create a simple dataframe
# importing pandas as pd
import pandas as pd
# creating a dataframe
df = pd.DataFrame({'Name': {0: 'John', 1: 'Bob', 2: 'Shiela'},
                   'Course': {0: 'Masters', 1: 'Graduate', 2: 'Graduate'},
                   'Age': {0: 27, 1: 23, 2: 21}})



# Name is id_vars and Course is value_vars
pd.melt(df, id_vars =['Name'], value_vars =['Course'])



# multiple unpivot columns
pd.melt(df, id_vars =['Name'], value_vars =['Course', 'Age'])



# Names of ‘variable’ and ‘value’ columns can be customized
pd.melt(df, id_vars =['Name'], value_vars =['Course'],
              var_name ='ChangedVarname', value_name ='ChangedValname')

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!