Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Python | Pandas Index.is_unique

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects.

Pandas Index.is_unique attribute return True if the underlying data in the given Index object is unique else it return False.

Syntax: Index.is_unique

Parameter : None

Returns : boolean

Example #1: Use Index.is_unique attribute to find out if the underlying data in the given Index object is unique or not.




# importing pandas as pd
import pandas as pd
  
# Creating the index
idx = pd.Index(['Melbourne', 'Sanghai', 'Lisbon', 'Doha', 'Moscow'])
  
# Print the index
print(idx)


Output :

Now we will use Index.is_unique attribute to find out if the underlying data in the given Index object is unique or not.




# check if the values in the Index
# is unique or not.
result = idx.is_unique
  
# Print the result
print(result)


Output :

As we can see in the output, the Index.is_unique attribute has returned True indicating that the underlying data of the given Index object is unique.
 
Example #2 : Use Index.is_unique attribute to find out if the underlying data in the given Index object is unique or not.




# importing pandas as pd
import pandas as pd
  
# Creating the index
idx = pd.Index([900, 700, 620, 388, 900])
  
# Print the index
print(idx)


Output :

Now we will use Index.is_unique attribute to find out if the underlying data in the given Index object is unique or not.




# check if the values in the Index
# is unique or not.
result = idx.is_unique
  
# Print the result
print(result)


Output :

As we can see in the output, the Index.is_unique attribute has returned False indicating that the underlying data of the given Index object is not unique.


My Personal Notes arrow_drop_up
Last Updated : 20 Feb, 2019
Like Article
Save Article
Similar Reads
Related Tutorials