Python | Pandas Index.inferred_type
Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects.
Pandas Index.inferred_type
attribute return a string of the data type inferred from the values of the given Index object.
Syntax: Index.inferred_type
Parameter : None
Returns : inferred_type
Example #1: Use Index.inferred_type
attribute to find out the inferred data type of the value in the given Index object.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ 'Jan' , 'Feb' , 'Mar' , 'Apr' , 'May' ]) # Print the index print (idx) |
Output :
Index(['Jan', 'Feb', 'Mar', 'Apr', 'May'], dtype='object')
Now we will use Index.inferred_type
attribute to find out the inferred dtype of the underlying data of the given Index object.
# return the inferred dtype result = idx.inferred_type # Print the result print (result) |
Output :
mixed
As we can see in the output, the Index.inferred_type
attribute has returned String
as the inferred data type of the given Index object.
Example #2 : Use Index.inferred_type
attribute to find out the inferred data type of the value in the given Index object.
# importing pandas as pd import pandas as pd # Creating the index idx = pd.Index([ '2012-12-12' , None , '2002-1-10' , None ]) # Print the index print (idx) |
Output :
Index(['2012-12-12', None, '2002-1-10', None], dtype='object')
Now we will use Index.inferred_type
attribute to find out the inferred dtype of the underlying data of the given Index object.
# return the inferred dtype result = idx.inferred_type # Print the result print (result) |
Output :
mixed
As we can see in the output, the Index.inferred_type
attribute has returned mixed
as the inferred data type of the given Index object.
Please Login to comment...