Skip to content
Related Articles

Related Articles

Python | Pandas DataFrame.truncate

View Discussion
Improve Article
Save Article
Like Article
  • Difficulty Level : Easy
  • Last Updated : 21 Feb, 2019

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.truncate() function is used to truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Syntax: DataFrame.truncate(before=None, after=None, axis=None, copy=True)

Parameter :
before : Truncate all rows before this index value.
after : Truncate all rows after this index value.
axis : Axis to truncate. Truncates the index (rows) by default.
copy : Return a copy of the truncated section.

Returns : The truncated Series or DataFrame.

Example #1: Use DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
  
# Create the index
index_ = pd.date_range('2010-10-09 08:45', periods = 5, freq ='H')
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.truncate() function to truncate the entries before ‘2010-10-09 09:45:00’ and after ‘2010-10-09 11:45:00’ in the given dataframe.




# return the truncated dataframe
result = df.truncate(before = '2010-10-09 09:45:00', after = '2010-10-09 11:45:00')
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.
 
Example #2: Use DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1], 
                   "B":[7, 2, 54, 3, None], 
                   "C":[20, 16, 11, 3, 8], 
                   "D":[14, 3, None, 2, 6]}) 
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.truncate() function to truncate the entries before ‘Row_3’ and after ‘Row_4’ in the given dataframe.




# return the truncated dataframe
result = df.truncate(before = 'Row_3', after = 'Row_4')
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!