Python | Pandas DataFrame.truediv
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas DataFrame.truediv()
function perform the floating division of dataframe and other, element-wise. It is equivalent to dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs.
Syntax: DataFrame.truediv(other, axis=’columns’, level=None, fill_value=None)
Parameter :
other : scalar, sequence, Series, or DataFrame
axis : {0 or ‘index’, 1 or ‘columns’}
level : Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment.Returns : Result of the arithmetic operation.
Example #1 : Use DataFrame.truediv()
function to perform division of the given dataframe with a scalar element-wise. Also fill 100 at the place of all the missing values.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ], "B" :[ 7 , 2 , 54 , 3 , None ], "C" :[ 20 , 16 , 11 , 3 , 8 ], "D" :[ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.truediv()
function to perform division of the given dataframe by 2, element-wise. We are going to fill 100 at the place of all the missing values in this dataframe.
# divide by 2 element-wise # fill 100 at the place of missing values result = df.truediv(other = 2 , fill_value = 100 ) # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.truediv()
function has successfully performed the division of the given dataframe by a scalar.
Example #2 : Use DataFrame.truediv()
function to perform the division of the given dataframe using a list.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ], "B" :[ 7 , 2 , 54 , 3 , None ], "C" :[ 20 , 16 , 11 , 3 , 8 ], "D" :[ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.truediv()
function to perform division of the given dataframe using a list.
# divide using a list # across the column axis result = df.truediv(other = [ 10 , 4 , 8 , 3 ], axis = 1 ) # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.truediv()
function has successfully performed the division of the given dataframe by a list.
Please Login to comment...