Python | Pandas dataframe.set_value()
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.set_value()
function put a single value at passed column and index. It takes the axis labels as input and a scalar value to be placed at the specified index in the dataframe. Alternative to this function is .at[]
or .iat[]
.
Syntax:DataFrame.set_value(index, col, value, takeable=False)
Parameters :
index : row label
col : column label
value : scalar value
takeable : interpret the index/col as indexers, default FalseReturn : frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object
Example #1: Use set_value()
function to set the value in the dataframe at a particular index.
# importing pandas as pd import pandas as pd # Creating the dataframe df = pd.DataFrame({ "A" :[ 1 , 5 , 3 , 4 , 2 ], "B" :[ 3 , 2 , 4 , 3 , 4 ], "C" :[ 2 , 2 , 7 , 3 , 4 ], "D" :[ 4 , 3 , 6 , 12 , 7 ]}) # Print the dataframe df |
Lets use the dataframe.set_value()
function to set value of a particular index.
# set value of a cell which has index label "2" and column label "B" df.set_value( 2 , 'B' , 100 ) |
Output :
Example #2: Use set_value()
function to set value of a non-existent index and column in the dataframe.
# importing pandas as pd import pandas as pd # Creating the dataframe df = pd.DataFrame({ "A" :[ 1 , 5 , 3 , 4 , 2 ], "B" :[ 3 , 2 , 4 , 3 , 4 ], "C" :[ 2 , 2 , 7 , 3 , 4 ], "D" :[ 4 , 3 , 6 , 12 , 7 ]}) # Print the dataframe df |
Lets use the dataframe.set_value()
function to set value of a particular index.
# set value of a cell which has index label "8" and column label "8" df.set_value( 8 , 8 , 1000 ) |
Output :
Notice, for the non-existent row and column in the dataframe, a new row and column has been inserted.
Please Login to comment...