Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Puzzle 16 | (100 Doors)

  • Difficulty Level : Medium
  • Last Updated : 16 Sep, 2021

There are 100 doors in a row, all doors are initially closed. A person walks through all doors multiple times and toggle (if open then close, if close then open) them in the following way: 

In the first walk, the person toggles every door 

In the second walk, the person toggles every second door, i.e., 2nd, 4th, 6th, 8th, … 

In the third walk, the person toggles every third door, i.e. 3rd, 6th, 9th, … 


In the 100th walk, the person toggles the 100th door. 

Which doors are open in the end? 

A door is toggled in ith walk if i divides door number. For example, door number 45 is toggled in 1st, 3rd, 5th, 9th,15th, and 45th walk.
The door is switched back to an initial stage for every pair of divisors. For example, 45 is toggled 6 times for 3 pairs (5, 9), (15, 3), and (1, 45). 
It looks like all doors would become closed at the end. But there are door numbers which would become open, for example, 16, the pair (4, 4) means only one walk. Similarly all other perfect squares like 4, 9,… 

So the answer is 1, 4, 9, 16, 25, 36, 49, 64, 81 and 100. 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!