Program to print tetrahedral numbers upto Nth term
Prerequisites:
Given a value n, and the task is to print tetrahedral number series up to nth term.
Examples:
Input: 5 Output: 1 4 10 20 35 Input: 10 Output: 1 4 10 20 35 56 84 120 165 220
Method 1: Using Triangular Number series:
This problem can be easily solved with the fact that Nth Tetrahedral Number is equal to the sum of first N Triangular Numbers.
Let’s have a look on Series of triangular and tetrahedral Numbers.
To print series upto 5th term: Triangular Numbers = 1 3 6 10 15 Tetrahedral numbers = 1 4 10 20 35 i.e (1) (1 + 3) (1 + 3 + 6) (1 + 3 + 6 + 10) (1 + 3 + 6 + 10 + 35)
Calculate Nth Triangular number using formula
So, print the tetrahedral numbers series by generating triangular numbers and adding it with the sum of all previously generated triangular numbers.
Below is the implementation of the above approach:
C++
// C++ program to generate tetrahedral // number series #include <bits/stdc++.h> using namespace std; // function to generate nth triangular // number long findTriangularNumber( int n) { return (n * (n + 1)) / 2; } // function to print tetrahedral number // series up to n void printSeries( int n) { // Initialize prev as 0. It stores // the sum of all previously generated // triangular number int prev = 0; int curr; // Loop to print series for ( int i = 1; i <= n; i++) { // Find ith triangular number curr = findTriangularNumber(i); // Add ith triangular number to // sum of all previously generated // triangular number to get ith // tetrahedral number curr = curr + prev; cout << curr << " " ; // Update sum of all previously // generated triangular number prev = curr; } } // Driver code int main() { int n = 10; // function call to print series printSeries(n); return 0; } |
Java
// Java program to generate tetrahedral // number series import java.io.*; class GFG { // function to generate nth triangular // number static long findTriangularNumber( int n) { return (n * (n + 1 )) / 2 ; } // function to print tetrahedral number // series up to n static void printSeries( int n) { // Initialize prev as 0. It store // the sum of all previously generated // triangular number long prev = 0 ; long curr; // Loop to print series for ( int i = 1 ; i <= n; i++) { // Find ithh triangular number curr = findTriangularNumber(i); // Add ith triangular number to // sum of all previously generated // triangular number to get ith // tetrahedral number curr = curr + prev; System.out.print(curr + " " ); // Update sum of all previously // generated triangular number prev = curr; } } // Driver code public static void main (String[] args) { int n = 10 ; // function call to print series printSeries(n); } } |
Python3
# Python3 program to generate # tetrahedral number series # function to generate nth # triangular number def findTriangularNumber(n): return (n * (n + 1 )) / 2 # function to print tetrahedral # number series up to n def printSeries(n): # Initialize prev as 0. # It stores the sum of all # previously generated # triangular number prev = 0 # Loop to print series for i in range ( 1 , n + 1 ): # Find ith triangular number curr = findTriangularNumber(i) # Add ith triangular number # to sum of all previously # generated triangular number # to get ith tetrahedral number curr = int (curr + prev) print (curr, end = ' ' ) # Update sum of all previously # generated triangular number prev = curr # Driver code n = 10 # function call to # print series printSeries(n) # This code is contributed by Mahadev. |
C#
// C# program to generate tetrahedral // number series using System; public class GFG{ // function to generate nth triangular // number static long findTriangularNumber( int n) { return (n * (n + 1)) / 2; } // function to print tetrahedral number // series up to n static void printSeries( int n) { // Initialize prev as 0. It store // the sum of all previously generated // triangular number long prev = 0; long curr; // Loop to print series for ( int i = 1; i <= n; i++) { // Find ithh triangular number curr = findTriangularNumber(i); // Add ith triangular number to // sum of all previously generated // triangular number to get ith // tetrahedral number curr = curr + prev; Console.Write(curr + " " ); // Update sum of all previously // generated triangular number prev = curr; } } // Driver code static public void Main () { int n = 10; // function call to print series printSeries(n); } } |
PHP
<?php // PHP program to generate tetrahedral // number series // function to generate nth triangular // number function findTriangularNumber( $n ) { return ( $n * ( $n + 1)) / 2; } // function to print tetrahedral number // series up to n function printSeries( $n ) { // Initialize prev as 0. It store // the sum of all previously generated // triangular number $prev = 0; $curr ; // Loop to print series for ( $i = 1; $i <= $n ; $i ++) { // Find ithh triangular number $curr = findTriangularNumber( $i ); // Add ith triangular number to // sum of all previously generated // triangular number to get ith // tetrahedral number $curr = $curr + $prev ; echo ( $curr . " " ); // Update sum of all previously // generated triangular number $prev = $curr ; } } // Driver code $n = 10; // function call to print series printSeries( $n ); ?> |
Javascript
<script> // Javascript program to generate tetrahedral // number series // function to generate nth triangular // number function findTriangularNumber(n) { return (n * (n + 1)) / 2; } // function to print tetrahedral number // series up to n function printSeries(n) { // Initialize prev as 0. It stores // the sum of all previously generated // triangular number var prev = 0; var curr; // Loop to print series for ( var i = 1; i <= n; i++) { // Find ith triangular number curr = findTriangularNumber(i); // Add ith triangular number to // sum of all previously generated // triangular number to get ith // tetrahedral number curr = curr + prev; document.write( curr + " " ); // Update sum of all previously // generated triangular number prev = curr; } } // Driver code var n = 10; // function call to print series printSeries(n); // This code is contributed by itsok. </script> |
1 4 10 20 35 56 84 120 165 220
Time Complexity: O(n), where n represents the given integer.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Method 2: Using Tetrahedral Number Formula:
Formula to find nth tetrahedral number:
Below is the required implementation:
C++
// C++ program to generate series of // tetrahedral numbers #include <bits/stdc++.h> using namespace std; // function to print tetrahedral // number series up to n void printSeries( int n) { // loop to print series for ( int i = 1; i <= n; i++) { // Calculate and print ith // tetrahedral number int num = i * (i + 1) * (i + 2) / 6; cout << num << " " ; } } // Driver code int main() { int n = 10; // function call to print series printSeries(n); return 0; } |
Java
// Java program to generate series of // tetrahedral numbers import java.io.*; class GFG { // function to print tetrahedral // number series up to n static void printSeries( int n) { // loop to print series for ( int i = 1 ; i <= n; i++) { // Calculate and print ith // tetrahedral number int num = i * (i + 1 ) * (i + 2 ) / 6 ; System.out.print(num + " " ); } } // Driver code public static void main (String[] args) { int n = 10 ; // function call to print series printSeries(n); } } |
Python3
# Python3 code to print tetrahedral # numbers series up to n # function to print tetrahedral series up to n def printSeries(n): # loop to print series for i in range ( 1 , n + 1 ): # Calculate and print ith # Tetrahedral number num = i * (i + 1 ) * (i + 2 ) / / 6 print (num, end = ' ' ) # Driver code n = 10 # function call to print series printSeries(n) |
C#
// C# program to generate series of // tetrahedral numbers using System; public class GFG{ // function to print tetrahedral // number series up to n static void printSeries( int n) { // loop to print series for ( int i = 1; i <= n; i++) { // Calculate and print ith // tetrahedral number int num = i * (i + 1) * (i + 2) / 6; Console.Write(num + " " ); } } // Driver code static public void Main () { int n = 10; // function call to print series printSeries(n); } } |
PHP
<?php // PHP program to generate series of // tetrahedral numbers // function to print tetrahedral // number series up to n function printSeries( $n ) { // loop to print series for ( $i = 1; $i <= $n ; $i ++) { // Calculate and print ith // tetrahedral number $num = $i * ( $i + 1) * ( $i + 2) / 6; echo ( $num . " " ); } } // Driver code $n = 10; // function call to print series printSeries( $n ); ?> |
Javascript
<script> // Javascript program to generate series of // tetrahedral numbers // function to print tetrahedral // number series up to n function printSeries(n) { let i; // loop to print series for (i = 1; i <= n; i++) { // Calculate and print ith // tetrahedral number let num = i * (i + 1) * ((i + 2) / 6); document.write(num + " " ); } } // driver program let n = 10; // function call to print series printSeries(n); // This code is contributed by susmitakundugoaldanga. </script> |
1 4 10 20 35 56 84 120 165 220
Time Complexity: O(n), where n represents the given integer.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please Login to comment...