Program to find the sum of the series 1 + x + x^2+ x^3+ .. + x^n
Given an integer X, the task is to print the series and find the sum of the series
Examples :
Input: X = 2, N = 5
Output: Sum = 31
1 2 4 8 16
Input: X = 1, N = 10
Output: Sum = 10
1 1 1 1 1 1 1 1 1 1
Approach: The idea is to traverse over the series and compute the sum of the N terms of the series. The Nth term of the series can be computed as:
Nth Term = (N-1)th Term * X
Below is the implementation of the above approach:
C++
// C++ implementation to find // sum of series of // 1 + x^2 + x^3 + ....+ x^n #include <bits/stdc++.h> using namespace std; // Function to find the sum of // the series and print N terms // of the given series double sum( int x, int n) { double i, total = 1.0, multi = x; // First Term cout << total << " " ; // Loop to print the N terms // of the series and find their sum for (i = 1; i < n; i++) { total = total + multi; cout << multi << " " ; multi = multi * x; } cout << "\n" ; return total; } // Driver code int main() { int x = 2; int n = 5; cout << fixed << setprecision(2) << sum(x, n); return 0; } |
C
// C implementation to find the sum // of series 1 + x^2 + x^3 + ....+ x^n #include <math.h> #include <stdio.h> // Function to print the sum // of the series double sum( int x, int n) { double i, total = 1.0, multi = x; // First Term of series printf ( "1 " ); // Loop to find the N // terms of the series for (i = 1; i < n; i++) { total = total + multi; printf ( "%.1f " , multi); multi = multi * x; } printf ( "\n" ); return total; } // Driver Code int main() { int x = 2; int n = 5; printf ( "%.2f" , sum(x, n)); return 0; } |
Java
// Java implementation to find // the sum of series // 1 + x^2 + x^3 + ....+ x^n class GFG { // Java code to print the sum // of the given series static double sum( int x, int n) { double i, total = 1.0 , multi = x; // First Term System.out.print( "1 " ); // Loop to print the N terms // of the series and compute // their sum for (i = 1 ; i < n; i++) { total = total + multi; System.out.print(multi); System.out.print( " " ); multi = multi * x; } System.out.println(); return total; } // Driver Code public static void main(String[] args) { int x = 2 ; int n = 5 ; System.out.printf( "%.2f" , sum(x, n)); } } |
Python3
# Python3 program to find sum of # series of 1 + x^2 + x^3 + ....+ x^n # Function to find the sum of # the series and print N terms # of the given series def sum (x, n): total = 1.0 multi = x # First Term print ( 1 , end = " " ) # Loop to print the N terms # of the series and find their sum for i in range ( 1 , n): total = total + multi print ( '%.1f' % multi, end = " " ) multi = multi * x print ( '\n' ) return total; # Driver code x = 2 n = 5 print ( '%.2f' % sum (x, n)) # This code is contributed by Pratik Basu |
C#
// C# implementation to find // the sum of series // 1 + x^2 + x^3 + ....+ x^n using System; class GFG{ // C# code to print the sum // of the given series static double sum( int x, int n) { double i, total = 1.0, multi = x; // First Term Console.Write( "1 " ); // Loop to print the N terms // of the series and compute // their sum for (i = 1; i < n; i++) { total = total + multi; Console.Write(multi); Console.Write( " " ); multi = multi * x; } Console.WriteLine(); return total; } // Driver Code public static void Main(String[] args) { int x = 2; int n = 5; Console.Write( "{0:F2}" , sum(x, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation to find // sum of series of // 1 + x^2 + x^3 + ....+ x^n // Function to find the sum of // the series and print N terms // of the given series function sum(x, n) { let i, total = 1.0, multi = x; // First Term document.write(total + " " ); // Loop to print the N terms // of the series and find their sum for (i = 1; i < n; i++) { total = total + multi; document.write(multi + " " ); multi = multi * x; } document.write( "<br>" ); return total; } // Driver code let x = 2; let n = 5; document.write(sum(x, n).toFixed(2)); // This code is contributed by Surbhi Tyagi. </script> |
Output:
1 2.0 4.0 8.0 16.0 31.00
Time Complexity: O(n)
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...