Program to find the Nth Harmonic Number
Given a number N. The task is to find the Nth Harmonic Number.
Let the nth harmonic number be Hn.
The harmonic series is as follows:
H1 = 1
H2 = H1 + 1/2
H3 = H2 + 1/3
H4 = H3 + 1/4
.
.
.
Hn = Hn-1 + 1/n
Examples:
Input : N = 5 Output : 2.45 Input : N = 9 Output : 2.71786
The idea is to traverse from H1 and then consecutively keep finding H2 from H1, H3 from H2 ….. and so on.
Below is the program to find N-th Harmonic Number:
C++
// CPP program to find N-th Harmonic Number #include <iostream> using namespace std; // Function to find N-th Harmonic Number double nthHarmonic( int N) { // H1 = 1 float harmonic = 1.00; // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for ( int i = 2; i <= N; i++) { harmonic += ( float )1 / i; } return harmonic; } // Driver Code int main() { int N = 8; cout<<nthHarmonic(N); return 0; } |
Java
// Java program to find N-th Harmonic Number import java.io.*; class GFG { // Function to find N-th Harmonic Number static double nthHarmonic( int N) { // H1 = 1 float harmonic = 1 ; // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for ( int i = 2 ; i <= N; i++) { harmonic += ( float ) 1 / i; } return harmonic; } // Driver Code public static void main (String[] args) { int N = 8 ; System.out.print(nthHarmonic(N)); } } // This code is contributed // by ajit |
Python 3
# Python3 program to find # N-th Harmonic Number # Function to find N-th Harmonic Number def nthHarmonic(N) : # H1 = 1 harmonic = 1.00 # loop to apply the formula # Hn = H1 + H2 + H3 ... + # Hn-1 + Hn-1 + 1/n for i in range ( 2 , N + 1 ) : harmonic + = 1 / i return harmonic # Driver code if __name__ = = "__main__" : N = 8 print ( round (nthHarmonic(N), 5 )) # This code is contributed by ANKITRAI1 |
C#
// C# program to find N-th Harmonic Number using System; class GFG { // Function to find N-th Harmonic Number static double nthHarmonic( int N) { // H1 = 1 float harmonic = 1; // loop to apply the formula // Hn = H1 + H2 + H3 ... + // Hn-1 + Hn-1 + 1/n for ( int i = 2; i <= N; i++) { harmonic += ( float )1 / i; } return harmonic; } // Driver Code static public void Main () { int N = 8; Console.Write(nthHarmonic(N)); } } // This code is contributed // by Raj |
PHP
<?php // PHP program to find // N-th Harmonic Number // Function to find N-th // Harmonic Number function nthHarmonic( $N ) { // H1 = 1 $harmonic = 1.00; // loop to apply the formula // Hn = H1 + H2 + H3 ... + // Hn-1 + Hn-1 + 1/n for ( $i = 2; $i <= $N ; $i ++) { $harmonic += (float)1 / $i ; } return $harmonic ; } // Driver Code $N = 8; echo nthHarmonic( $N ); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript program to find // N-th Harmonic Number // Function to find N-th // Harmonic Number function nthHarmonic(N) { // H1 = 1 let harmonic = 1.00; // loop to apply the formula // Hn = H1 + H2 + H3 ... + // Hn-1 + Hn-1 + 1/n for (let i = 2; i <= N; i++) { harmonic += parseFloat(1) / i; } return harmonic; } // Driver Code let N = 8; document.write( nthHarmonic(N).toFixed(5)); // This code is contributed by bobby </script> |
2.71786
Time Complexity: O(N)
Auxiliary Space: O(1) as using constant space, since no extra space has been taken.
Approach 2: Dynamic Programming:
The DP approach is better than the simple iterative approach because it avoids recomputing the sum from scratch every time. In the simple iterative approach, we add each term of the harmonic series from 1 to N one by one in every iteration. This means that we perform N-1 additions in total, which can be time-consuming for large values of N.
we only need to perform N-1 additions once and store the results in the harmonic vector. Then, we can simply access the N-th Harmonic number from the vector in constant time, which is much faster than recomputing the sum from scratch every time.
C++
#include <iostream> #include <vector> using namespace std; // Function to find N-th Harmonic Number double nthHarmonic( int N) { // H1 = 1 vector< double > harmonic(N+1); harmonic[1] = 1.0; // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for ( int i = 2; i <= N; i++) { harmonic[i] = harmonic[i-1] + ( double )1 / i; } return harmonic[N]; } // Driver Code int main() { int N = 8; cout<<nthHarmonic(N); return 0; } |
Java
import java.util.*; public class HarmonicNumber { // Function to find N-th Harmonic Number public static double nthHarmonic( int N) { // H1 = 1 List<Double> harmonic = new ArrayList<>(); harmonic.add( 0.0 ); // Add a dummy value to align with the C++ vector indexing harmonic.add( 1.0 ); // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for ( int i = 2 ; i <= N; i++) { harmonic.add(harmonic.get(i- 1 ) + 1.0 / i); } return harmonic.get(N); } // Driver Code public static void main(String[] args) { int N = 8 ; System.out.println(nthHarmonic(N)); } } |
Python3
def nthHarmonic(N): # H1 = 1 harmonic = [ 0.0 ] * (N + 1 ) harmonic[ 1 ] = 1.0 # loop to apply the formula # Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for i in range ( 2 , N + 1 ): harmonic[i] = harmonic[i - 1 ] + 1.0 / i return harmonic[N] # Driver Code N = 8 print (nthHarmonic(N)) |
C#
using System; class HarmonicNumber { // Function to find N-th Harmonic Number static double nthHarmonic( int N) { // H1 = 1 double [] harmonic = new double [N+1]; harmonic[1] = 1.0; // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for ( int i = 2; i <= N; i++) { harmonic[i] = harmonic[i-1] + 1.0 / i; } return harmonic[N]; } // Driver Code static void Main( string [] args) { int N = 8; Console.WriteLine(nthHarmonic(N)); } } |
Javascript
// Function to find N-th Harmonic Number function nthHarmonic(N) { // H1 = 1 const harmonic = new Array(N + 1); harmonic[1] = 1.0; // loop to apply the formula // Hn = H1 + H2 + H3 ... + Hn-1 + Hn-1 + 1/n for (let i = 2; i <= N; i++) { harmonic[i] = harmonic[i - 1] + (1 / i); } return harmonic[N]; } // Driver Code const N = 8; console.log(nthHarmonic(N)); |
2.71786
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...