Open in App
Not now

# Program to find the length of Latus Rectum of a Hyperbola

• Last Updated : 24 Jun, 2021

Given two integers A and B, representing the length of the semi-major and semi-minor axes of a Hyperbola, the task is to find the length of the latus rectum of the hyperbola.

Examples:

Input: A = 3, B = 2
Output: 2.66666

Input: A = 6, B = 3
Output: 3

Approach: The Latus Rectum of a hyperbola is the focal chord perpendicular to the major axis and the length of the Latus Rectum is equal to (Length of the minor axis )2/(length of major axis).

Follow the steps below to solve the given problem:

• Find the length of the major axis of the hyperbola and store it in a variable, say major.
• Find the length of the minor axis of the hyperbola and store it in a variable, say minor.
• After completing the above steps, print the value of (minor*minor)/major as the resultant length of the Latus Rectum.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach`   `#include ` `using` `namespace` `std;`   `// Function to calculate the length of` `// the latus rectum of a hyperbola` `double` `lengthOfLatusRectum(``double` `A,` `                           ``double` `B)` `{` `    ``// Store the length of major axis` `    ``double` `major = 2.0 * A;`   `    ``// Store the length of minor axis` `    ``double` `minor = 2.0 * B;`   `    ``// Store the length of the` `    ``// latus rectum` `    ``double` `latus_rectum = (minor * minor)` `                          ``/ major;`   `    ``// Return the length of the` `    ``// latus rectum` `    ``return` `latus_rectum;` `}`   `// Driver Code` `int` `main()` `{` `    ``double` `A = 3.0, B = 2.0;` `    ``cout << lengthOfLatusRectum(A, B);`   `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.io.*;`   `class` `GFG{` `  `  `// Function to calculate the length of` `// the latus rectum of a hyperbola` `static` `double` `lengthOfLatusRectum(``double` `A,` `                                  ``double` `B)` `{` `    `  `    ``// Store the length of major axis` `    ``double` `major = ``2.0` `* A;`   `    ``// Store the length of minor axis` `    ``double` `minor = ``2.0` `* B;`   `    ``// Store the length of the` `    ``// latus rectum` `    ``double` `latus_rectum = (minor * minor) / major;`   `    ``// Return the length of the` `    ``// latus rectum` `    ``return` `latus_rectum;` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``double` `A = ``3.0``, B = ``2.0``;` `    `  `    ``System.out.println(lengthOfLatusRectum(A, B));` `}}`   `// This code is contributed by Dharanendra L V.`

## Python3

 `# Python program for the above approach`   `# Function to calculate the length of` `# the latus rectum of a hyperbola` `def` `lengthOfLatusRectum(A,B):` `    `  `    ``# Store the length of major axis` `    ``major ``=` `2.0` `*` `A` `    `  `    ``# Store the length of minor axis    ` `    ``minor ``=` `2.0` `*` `B` `    `  `    ``# Store the length of the` `    ``# latus rectum` `    ``latus_rectum ``=` `(minor ``*` `minor) ``/` `major` `    `  `    ``# Return the length of the` `    ``# latus rectum` `    ``return` `latus_rectum`   `# Driver Code` `A ``=` `3.0` `B ``=` `2.0` `print``(``round``(lengthOfLatusRectum(A, B),``5``))`   `# This code is contributed by avanitrachhadiya2155`

## C#

 `// C# program for the above approach` `using` `System;` `class` `GFG` `{`   `// Function to calculate the length of` `// the latus rectum of a hyperbola` `static` `double` `lengthOfLatusRectum(``double` `A,` `                           ``double` `B)` `{` `  `  `    ``// Store the length of major axis` `    ``double` `major = 2.0 * A;`   `    ``// Store the length of minor axis` `    ``double` `minor = 2.0 * B;`   `    ``// Store the length of the` `    ``// latus rectum` `    ``double` `latus_rectum = (minor * minor)` `                          ``/ major;`   `    ``// Return the length of the` `    ``// latus rectum` `    ``return` `latus_rectum;` `}`   `// Driver Code` `public` `static` `void` `Main ()` `{` `    ``double` `A = 3.0, B = 2.0;` `    ``Console.WriteLine(lengthOfLatusRectum(A, B));`   `}}`   `// This code is contributed by ukasp.`

## Javascript

 ``

Output:

`2.66667`

Time Complexity: O(1)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Related Articles