Program to find Star number
A number is termed as star number, if it is a centered figurate number that represents a centered hexagram (six-pointed star) similar to chinese checker game. The few star numbers are 1, 13, 37, 73, 121, 181, 253, 337, 433, ….
Examples:
Input : n = 2 Output : 13 Input : n = 4 Output : 73 Input : n = 6 Output : 181
If we take few examples, we can notice that the n-th star number is given by the formula:
n-th star number = 6n(n - 1) + 1
Below is the implementation of above formula.
C++
// C++ program to find star number #include <bits/stdc++.h> using namespace std; // Returns n-th star number int findStarNum( int n) { return (6 * n * (n - 1) + 1); } // Driver code int main() { int n = 3; cout << findStarNum(n); return 0; } |
Java
// Java program to find star number import java.io.*; class GFG { // Returns n-th star number static int findStarNum( int n) { return ( 6 * n * (n - 1 ) + 1 ); } // Driver code public static void main(String args[]) { int n = 3 ; System.out.println(findStarNum(n)); } } // This code is contributed // by Nikita Tiwari. |
Python3
# Python3 program to # find star number # Returns n-th # star number def findStarNum(n): return ( 6 * n * (n - 1 ) + 1 ) # Driver code n = 3 print (findStarNum(n)) # This code is contributed by Smitha Dinesh Semwal |
C#
// C# program to find star number using System; class GFG { // Returns n-th star number static int findStarNum( int n) { return (6 * n * (n - 1) + 1); } // Driver code public static void Main() { int n = 3; Console.Write(findStarNum(n)); } } // This code is contributed // by vt_m. |
PHP
<?php //PHP program to find star number // Returns n-th star number function findStarNum( $n ) { return (6 * $n * ( $n - 1) + 1); } // Driver code $n = 3; echo findStarNum( $n ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find star number // Returns n-th star number function findStarNum(n) { return (6 * n * (n - 1) + 1); } // Driver code let n = 3; document.write(findStarNum(n)); // This code is contributed by rishavmahato348. </script> |
Output :
37
Time complexity: O(1) since performing constant operations
Space complexity: O(1) since using constant variables
Interesting Properties of Start Numbers:
- The digital root of a star number is always 1 or 4, and progresses in the sequence 1, 4, 1.
- The last two digits of a star number in base 10 are always 01, 13, 21, 33, 37, 41, 53, 61, 73, 81, or 93.
- The generating function for the star numbers is
x*(x^2 + 10*x + 1) / (1-x)^3 = x + 13*x^2 + 37*x^3 +73*x^4 .......
- The star numbers satisfy the linear recurrence equation
S(n) = S(n-1) + 12(n-1)
References :
http://mathworld.wolfram.com/StarNumber.html
https://en.wikipedia.org/wiki/Star_number
This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...