Skip to content
Related Articles
Open in App
Not now

Related Articles

Program to count number of set bits in an (big) array

Improve Article
Save Article
  • Difficulty Level : Expert
  • Last Updated : 21 Mar, 2023
Improve Article
Save Article

Given an integer array of length N (an arbitrarily large number). How to count number of set bits in the array?
The simple approach would be, create an efficient method to count set bits in a word (most prominent size, usually equal to bit length of processor), and add bits from individual elements of array.
Various methods of counting set bits of an integer exists, see this for example. These methods run at best O(logN) where N is number of bits. Note that on a processor N is fixed, count can be done in O(1) time on 32 bit machine irrespective of total set bits. Overall, the bits in array can be computed in O(n) time, where ‘n’ is array size.
However, a table look up will be more efficient method when array size is large. Storing table look up that can handle 232 integers will be impractical.
The following code illustrates simple program to count set bits in a randomly generated 64 K integer array. The idea is to generate a look up for first 256 numbers (one byte), and break every element of array at byte boundary. A meta program using C/C++ preprocessor generates the look up table for counting set bits in a byte.
The mathematical derivation behind meta program is evident from the following table (Add the column and row indices to get the number, then look into the table to get set bits in that number. For example, to get set bits in 10, it can be extracted from row named as 8 and column named as 2), 
 

   0, 1, 2, 3
 0 - 0, 1, 1, 2 -------- GROUP_A(0)
 4 - 1, 2, 2, 3 -------- GROUP_A(1)
 8 - 1, 2, 2, 3 -------- GROUP_A(1)
12 - 2, 3, 3, 4 -------- GROUP_A(2)
16 - 1, 2, 2, 3 -------- GROUP_A(1)
20 - 2, 3, 3, 4 -------- GROUP_A(2)
24 - 2, 3, 3, 4 -------- GROUP_A(2)
28 - 3, 4, 4, 5 -------- GROUP_A(3) ... so on

From the table, there is a pattern emerging in multiples of 4, both in the table as well as in the group parameter. The sequence can be generalized as shown in the code.
Complexity:
All the operations takes O(1) except iterating over the array. The time complexity is O(n) where ‘n’ is size of array. Space complexity depends on the meta program that generates look up.
Code: 
 

C++




#include <bits/stdc++.h>
#include <time.h>
using namespace std;
 
 
/* Size of array 64 K */
#define SIZE (1 << 16)
 
/* Meta program that generates set bit count
array of first 256 integers */
 
/* GROUP_A - When combined with META_LOOK_UP
generates count for 4x4 elements */
 
#define GROUP_A(x) x, x + 1, x + 1, x + 2
 
/* GROUP_B - When combined with META_LOOK_UP
generates count for 4x4x4 elements */
 
#define GROUP_B(x) GROUP_A(x), GROUP_A(x+1), GROUP_A(x+1), GROUP_A(x+2)
 
/* GROUP_C - When combined with META_LOOK_UP
generates count for 4x4x4x4 elements */
 
#define GROUP_C(x) GROUP_B(x), GROUP_B(x+1), GROUP_B(x+1), GROUP_B(x+2)
 
/* Provide appropriate letter to generate the table */
 
#define META_LOOK_UP(PARAMETER)\
GROUP_##PARAMETER(0),\
GROUP_##PARAMETER(1),\
GROUP_##PARAMETER(1),\
GROUP_##PARAMETER(2)\
 
int countSetBits(int array[], size_t array_size)
{
int count = 0;
 
/* META_LOOK_UP(C) - generates a table of 256 integers whose
    sequence will be number of bits in i-th position
    where 0 <= i < 256
*/
 
    /* A static table will be much faster to access */
    static unsigned char const look_up[] = { META_LOOK_UP(C) };
 
    /* No shifting funds (for better readability) */
    unsigned char *pData = NULL;
 
for(size_t index = 0; index < array_size; index++)
{
    /* It is fine, bypass the type system */
    pData = (unsigned char *)&array[index];
 
    /* Count set bits in individual bytes */
    count += look_up[pData[0]];
    count += look_up[pData[1]];
    count += look_up[pData[2]];
    count += look_up[pData[3]];
}
 
return count;
}
 
/* Driver program, generates table of random 64 K numbers */
int main()
{
int index;
int random[SIZE];
 
/* Seed to the random-number generator */
srand((unsigned)time(0));
 
/* Generate random numbers. */
for( index = 0; index < SIZE; index++ )
{
    random[index] = rand();
}
 
cout << "Total number of bits = "<< countSetBits(random, SIZE);
return 0;
}
 
// This is code is contributed by rathbhupendra


C




#include <stdio.h>
#include <stdlib.h>
#include <time.h>
 
/* Size of array 64 K */
#define SIZE (1 << 16)
 
/* Meta program that generates set bit count
   array of first 256 integers */
 
/* GROUP_A - When combined with META_LOOK_UP
   generates count for 4x4 elements */
 
#define GROUP_A(x) x, x + 1, x + 1, x + 2
 
/* GROUP_B - When combined with META_LOOK_UP
   generates count for 4x4x4 elements */
 
#define GROUP_B(x) GROUP_A(x), GROUP_A(x+1), GROUP_A(x+1), GROUP_A(x+2)
 
/* GROUP_C - When combined with META_LOOK_UP
   generates count for 4x4x4x4 elements */
 
#define GROUP_C(x) GROUP_B(x), GROUP_B(x+1), GROUP_B(x+1), GROUP_B(x+2)
 
/* Provide appropriate letter to generate the table */
 
#define META_LOOK_UP(PARAMETER) \
   GROUP_##PARAMETER(0),  \
   GROUP_##PARAMETER(1),  \
   GROUP_##PARAMETER(1),  \
   GROUP_##PARAMETER(2)   \
 
int countSetBits(int array[], size_t array_size)
{
   int count = 0;
 
   /* META_LOOK_UP(C) - generates a table of 256 integers whose
      sequence will be number of bits in i-th position
      where 0 <= i < 256
   */
 
    /* A static table will be much faster to access */
       static unsigned char const look_up[] = { META_LOOK_UP(C) };
 
    /* No shifting funds (for better readability) */
    unsigned char *pData = NULL;
 
   for(size_t index = 0; index < array_size; index++)
   {
      /* It is fine, bypass the type system */
      pData = (unsigned char *)&array[index];
 
      /* Count set bits in individual bytes */
      count += look_up[pData[0]];
      count += look_up[pData[1]];
      count += look_up[pData[2]];
      count += look_up[pData[3]];
   }
 
   return count;
}
 
/* Driver program, generates table of random 64 K numbers */
int main()
{
   int index;
   int random[SIZE];
 
   /* Seed to the random-number generator */
   srand((unsigned)time(0));
 
   /* Generate random numbers. */
   for( index = 0; index < SIZE; index++ )
   {
      random[index] = rand();
   }
 
   printf("Total number of bits = %d\n", countSetBits(random, SIZE));
   return 0;
}


Python3




import random
import time
 
# Size of array 64 K
SIZE = 1 << 16
 
# Look-up table generation macros
def GROUP_A(x):
    return x, x + 1, x + 1, x + 2
 
def GROUP_B(x):
    return GROUP_A(x) + GROUP_A(x+1) + GROUP_A(x+1) + GROUP_A(x+2)
 
def GROUP_C(x):
    return GROUP_B(x) + GROUP_B(x+1) + GROUP_B(x+1) + GROUP_B(x+2)
 
def META_LOOK_UP(PARAMETER):
    return GROUP_C(PARAMETER)
 
# Count the number of set bits in an array of integers
def count_set_bits(array):
    count = 0
 
    # Look-up table for counting set bits in a byte
    look_up = bytearray(META_LOOK_UP(0) + META_LOOK_UP(1) +
                        META_LOOK_UP(1) + META_LOOK_UP(2))
 
    for value in array:
        # Count set bits in individual bytes
        count += look_up[value & 0xFF]
        count += look_up[(value >> 8) & 0xFF]
        count += look_up[(value >> 16) & 0xFF]
        count += look_up[(value >> 24) & 0xFF]
 
    return count
 
# Driver program, generates table of random 64 K numbers
def main():
    # Seed to the random-number generator
    random.seed(time.time())
 
    # Generate random numbers
    random_numbers = [random.randint(0, 2**32-1) for _ in range(SIZE)]
 
    print("Total number of bits =", count_set_bits(random_numbers))
 
if __name__ == '__main__':
    main()
 
# This is code is contributed by rutikbhosale


Javascript




/* Size of array 64 K */
const SIZE = (1 << 16);
 
/* Meta program that generates set bit count
array of first 256 integers */
 
/* GROUP_A - When combined with META_LOOK_UP
generates count for 4x4 elements */
 
const GROUP_A = (x) => [x, x + 1, x + 1, x + 2];
 
/* GROUP_B - When combined with META_LOOK_UP
generates count for 4x4x4 elements */
 
const GROUP_B = (x) => [
  ...GROUP_A(x),
  ...GROUP_A(x + 1),
  ...GROUP_A(x + 1),
  ...GROUP_A(x + 2)
];
 
/* GROUP_C - When combined with META_LOOK_UP
generates count for 4x4x4x4 elements */
 
const GROUP_C = (x) => [
  ...GROUP_B(x),
  ...GROUP_B(x + 1),
  ...GROUP_B(x + 1),
  ...GROUP_B(x + 2)
];
 
/* Provide appropriate letter to generate the table */
 
const META_LOOK_UP = (PARAMETER) => [
  ...GROUP_C(0),
  ...GROUP_C(1),
  ...GROUP_C(1),
  ...GROUP_C(2)
];
 
function countSetBits(array) {
  let count = 0;
 
  /* META_LOOK_UP(C) - generates a table of 256 integers whose
    sequence will be number of bits in i-th position
    where 0 <= i < 256
  */
 
  /* A static table will be much faster to access */
  const look_up = new Uint8Array(META_LOOK_UP("C"));
 
  for (let index = 0; index < array.length; index++) {
    /* Count set bits in individual bytes */
    count += look_up[array[index] & 0xff];
    count += look_up[(array[index] >> 8) & 0xff];
    count += look_up[(array[index] >> 16) & 0xff];
    count += look_up[(array[index] >> 24) & 0xff];
  }
 
  return count;
}
 
/* Driver program, generates table of random 64 K numbers */
function main() {
  const random = new Uint32Array(SIZE);
 
  /* Generate random numbers. */
  for (let index = 0; index < SIZE; index++) {
    random[index] = Math.floor(Math.random() * Math.pow(2, 32));
  }
 
  console.log("Total number of bits = " + countSetBits(random));
}
 
main();
// This is code is contributed by rutikbhosale


Time Complexity: O(n)

Auxiliary Space: O(size)

Contributed by Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!