Program to check Strong Number
Strong Numbers are the numbers whose sum of factorial of digits is equal to the original number. Given a number, check if it is a Strong Number or not.
Examples:
Input : n = 145 Output : Yes Sum of digit factorials = 1! + 4! + 5! = 1 + 24 + 120 = 145 Input : n = 534 Output : No
1) Initialize sum of factorials as 0. 2) For every digit d, do following a) Add d! to sum of factorials. 3) If sum factorials is same as given number, return true. 4) Else return false.
An optimization is to precompute factorials of all numbers from 0 to 10.
C++
// C++ program to check if a number is // strong or not. #include <bits/stdc++.h> using namespace std; int f[10]; // Fills factorials of digits from 0 to 9. void preCompute() { f[0] = f[1] = 1; for ( int i = 2; i<10; ++i) f[i] = f[i-1] * i; } // Returns true if x is Strong bool isStrong( int x) { int factSum = 0; // Traverse through all digits of x. int temp = x; while (temp) { factSum += f[temp%10]; temp /= 10; } return (factSum == x); } // Driver code int main() { preCompute(); int x = 145; isStrong(x) ? cout << "Yes\n" : cout << "No\n" ; x = 534; isStrong(x) ? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
// Java program to check if // a number is Strong or not class CheckStrong { static int f[] = new int [ 10 ]; // Fills factorials of digits from 0 to 9. static void preCompute() { f[ 0 ] = f[ 1 ] = 1 ; for ( int i = 2 ; i< 10 ; ++i) f[i] = f[i- 1 ] * i; } // Returns true if x is Strong static boolean isStrong( int x) { int factSum = 0 ; // Traverse through all digits of x. int temp = x; while (temp> 0 ) { factSum += f[temp% 10 ]; temp /= 10 ; } return (factSum == x); } // main function public static void main (String[] args) { // calling preCompute preCompute(); // first pass int x = 145 ; if (isStrong(x)) { System.out.println( "Yes" ); } else System.out.println( "No" ); // second pass x = 534 ; if (isStrong(x)) { System.out.println( "Yes" ); } else System.out.println( "No" ); } } |
Python3
# Python program to check if a number is # strong or not. f = [ None ] * 10 # Fills factorials of digits from 0 to 9. def preCompute() : f[ 0 ] = f[ 1 ] = 1 ; for i in range ( 2 , 10 ) : f[i] = f[i - 1 ] * i # Returns true if x is Strong def isStrong(x) : factSum = 0 # Traverse through all digits of x. temp = x while (temp) : factSum = factSum + f[temp % 10 ] temp = temp / / 10 return (factSum = = x) # Driver code preCompute() x = 145 if (isStrong(x) ) : print ( "Yes" ) else : print ( "No" ) x = 534 if (isStrong(x)) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by Nikita Tiwari. |
C#
// C# program to check if // a number is Strong or not using System; class CheckStrong { static int []f = new int [10]; // Fills factorials of digits from 0 to 9. static void preCompute() { f[0] = f[1] = 1; for ( int i = 2; i < 10; ++i) f[i] = f[i - 1] * i; } // Returns true if x is Strong static bool isStrong( int x) { int factSum = 0; // Traverse through all digits of x. int temp = x; while (temp > 0) { factSum += f[temp % 10]; temp /= 10; } return (factSum == x); } // Driver Code public static void Main () { // calling preCompute preCompute(); // first pass int x = 145; if (isStrong(x)) { Console.WriteLine( "Yes" ); } else Console.WriteLine( "No" ); // second pass x = 534; if (isStrong(x)) { Console.WriteLine( "Yes" ); } else Console.WriteLine( "No" ); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to check if a number // is strong or not. $f [10] = array (); // Fills factorials of digits // from 0 to 9. function preCompute() { global $f ; $f [0] = $f [1] = 1; for ( $i = 2; $i < 10; ++ $i ) $f [ $i ] = $f [ $i - 1] * $i ; } // Returns true if x is Strong function isStrong( $x ) { global $f ; $factSum = 0; // Traverse through all digits of x. $temp = $x ; while ( $temp ) { $factSum += $f [ $temp % 10]; $temp = (int) $temp / 10; } return ( $factSum == $x ); } // Driver code preCompute(); $x = 145; if (isStrong(! $x )) echo "Yes\n" ; else echo "No\n" ; $x = 534; if (isStrong( $x )) echo "Yes\n" ; else echo "No\n" ; // This code is contributed by jit_t ?> |
Javascript
<script> // Javascript program to check if a number is // strong or not. let f = new Array(10); // Fills factorials of digits from 0 to 9. function preCompute() { f[0] = f[1] = 1; for (let i = 2; i<10; ++i) f[i] = f[i-1] * i; } // Returns true if x is Strong function isStrong(x) { let factSum = 0; // Traverse through all digits of x. let temp = x; while (temp) { factSum += f[temp%10]; temp = Math.floor(temp/10); } return (factSum == x); } // Driver code preCompute(); let x = 145; isStrong(x) ? document.write( "Yes" + "<br>" ) : document.write( "No" + "<br>" ); x = 534; isStrong(x) ? document.write( "Yes" + "<br>" ) : document.write( "No" + "<br>" ); //This code is contributed by Mayank Tyagi </script> |
Output:
Yes No
Time Complexity: O(logn)
Auxiliary Space: O(1), since constant extra space has been taken.
This article is contributed by Pramod Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Approach#2: Using Iterative Method
This approach converts the input number into a list of its digits. It then computes the factorial sum of each digit and adds them up. If the final sum is equal to the input number, it returns “Yes”, otherwise it returns “No”.
Algorithm
1. Define a function is_strong(n) that takes a number n as input.
2. Convert the number to a string and get its digits.
3. Calculate the factorial of each digit using an iterative method.
4. Sum the factorials of all digits.
5. If the sum is equal to the number n, return “Yes”, otherwise return “No”.
Python3
def is_strong(n): digits = [ int (d) for d in str (n)] factorial_sum = 0 for d in digits: f = 1 for i in range ( 1 , d + 1 ): f * = i factorial_sum + = f if factorial_sum = = n: return "Yes" else : return "No" n = 145 print (is_strong(n)) |
Yes
Time Complexity: O(kn^2), where k is the number of digits in the number and n is the maximum value of a digit
Auxiliary Space: O(k), where k is the number of digits in the number.
Please Login to comment...