Program to check if N is a Centered Tridecagonal Number
Given a number N, the task is to check if N is a Centered Tridecagonal Number or not. If the number N is a Centered Tridecagonal Number then print “Yes” else print “No”.
Centered tridecagonal number represents a dot at the center and other dots surrounding the center dot in the successive tridecagonal(13 sided polygon) layer. The first few Centered tridecagonal numbers are 1, 14, 40, 79 …
Examples:
Input: N = 14
Output: Yes
Explanation:
Second Centered tridecagonal number is 14.Input: N = 30
Output: No
Approach:
1. The Kth term of the Centered Tridecagonal Number is given as
2. As we have to check that the given number can be expressed as a Centered Tridecagonal Number or not. This can be checked as follows:
=>
=>
3. If the value of K calculated using the above formula is an integer, then N is a Centered Tridecagonal Number.
4. Else the number N is not a Centered Tridecagonal Number.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the number N // is a Centered tridecagonal number bool isCenteredtridecagonal( int N) { float n = (13 + sqrt (104 * N + 65)) / 26; // Condition to check if the N // is a Centered tridecagonal number return (n - ( int )n) == 0; } // Driver Code int main() { // Given Number int N = 14; // Function call if (isCenteredtridecagonal(N)) { cout << "Yes" ; } else { cout << "No" ; } return 0; } |
Java
// Java program for the above approach class GFG{ // Function to check if the number N // is a centered tridecagonal number static boolean isCenteredtridecagonal( int N) { float n = ( float ) (( 13 + Math.sqrt( 104 * N + 65 )) / 26 ); // Condition to check if the N // is a centered tridecagonal number return (n - ( int )n) == 0 ; } // Driver Code public static void main(String[] args) { // Given Number int N = 14 ; // Function call if (isCenteredtridecagonal(N)) { System.out.print( "Yes" ); } else { System.out.print( "No" ); } } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program for the above approach import numpy as np # Function to check if the number N # is a centered tridecagonal number def isCenteredtridecagonal(N): n = ( 13 + np.sqrt( 104 * N + 65 )) / 26 # Condition to check if N # is centered tridecagonal number return (n - int (n)) = = 0 # Driver Code N = 14 # Function call if (isCenteredtridecagonal(N)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by PratikBasu |
C#
// C# program for the above approach using System; class GFG{ // Function to check if the number N // is a centered tridecagonal number static bool isCenteredtridecagonal( int N) { float n = ( float ) ((13 + Math.Sqrt(104 * N + 65)) / 26); // Condition to check if the N // is a centered tridecagonal number return (n - ( int )n) == 0; } // Driver Code public static void Main( string [] args) { // Given Number int N = 14; // Function call if (isCenteredtridecagonal(N)) { Console.Write( "Yes" ); } else { Console.Write( "No" ); } } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript program for the above approach // Function to check if the number N // is a Centered tridecagonal number function isCenteredtridecagonal(N) { let n = (13 + Math.sqrt(104 * N + 65)) / 26; // Condition to check if the N // is a Centered tridecagonal number return (n - parseInt(n)) == 0; } // Driver Code // Given Number let N = 14; // Function call if (isCenteredtridecagonal(N)) { document.write( "Yes" ); } else { document.write( "No" ); } // This code is contributed by subham348. </script> |
Yes
Time Complexity: O(logN) since inbuilt sqrt function is being used
Auxiliary Space: O(1)
Please Login to comment...