Program to print triangular number series till n
A triangular number or triangle number counts objects arranged in an equilateral triangle, as in the diagram on the right. The n-th triangular number is the number of dots composing a triangle with n dots on a side, and is equal to the sum of the n natural numbers from 1 to n.
Examples :
Input : 5 Output : 1 3 6 10 15 Input : 10 Output : 1 3 6 10 15 21 28 36 45 55 Explanation : For k = 1 and j = 1 -> print k ( i.e. 1); increase j by 1 and add into k then print k ( i.e 3 ) update k increase j by 1 and add into k then print k ( i.e 6 ) update k increase j by 1 and add into k then print k ( i.e 10 ) update k increase j by 1 and add into k then print k ( i.e 15 ) update k increase j by 1 and add into k then print k ( i.e 21 ) update k . . and so on.
Approach used is very simple. Iterate for loop till the value given n and for each iteration increase j by 1 and add it into k, which will simply print the triangular number series till n.
Below is the program implementing above approach:
C++
// C++ Program to find Triangular Number Series #include <iostream> using namespace std; // Function to find triangular number void triangular_series( int n) { int i, j = 1, k = 1; // For each iteration increase j by 1 // and add it into k for (i = 1; i <= n; i++) { cout << k << " " ; j = j + 1; // Increasing j by 1 k = k + j; // Add value of j into k and update k } } // Driven Function int main() { int n = 5; triangular_series(n); return 0; } //this code is contributed by aditya942003patil |
C
// C Program to find Triangular Number Series #include <stdio.h> // Function to find triangular number void triangular_series( int n) { int i, j = 1, k = 1; // For each iteration increase j by 1 // and add it into k for (i = 1; i <= n; i++) { printf ( " %d " , k); j = j + 1; // Increasing j by 1 k = k + j; // Add value of j into k and update k } } // Driven Function int main() { int n = 5; triangular_series(n); return 0; } |
Java
// Java Program to print triangular number series till n import java.util.*; class GFG { // Function to find triangular number static void triangular_series( int n) { int i, j = 1 , k = 1 ; // For each iteration increase j by 1 // and add it into k for (i = 1 ; i <= n; i++) { System.out.printf( "%d " , k); j = j + 1 ; // Increasing j by 1 k = k + j; // Add value of j into k and update k } } // Driver function public static void main(String[] args) { int n = 5 ; triangular_series(n); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python3 code to find Triangular # Number Series # Function to find triangular number def triangular_series( n ): j = 1 k = 1 # For each iteration increase j # by 1 and add it into k for i in range ( 1 , n + 1 ): print (k, end = ' ' ) j = j + 1 # Increasing j by 1 # Add value of j into k and update k k = k + j # Driven Code n = 5 triangular_series(n) # This code is contributed by "Sharad_Bhardwaj" |
C#
// C# Program to print triangular // number series till n using System; class GFG { // Function to find triangular number static void triangular_series( int n) { int i, j = 1, k = 1; // For each iteration increase j by 1 // and add it into k for (i = 1; i <= n; i++) { Console.Write(k + " " ); j += 1; // Increasing j by 1 k += j; // Add value of j into k and update k } } // Driver Code public static void Main() { int n = 5; triangular_series(n); } } // This code is contributed by vt_m. |
PHP
<?php // PHP Program to find // Triangular Number Series // Function to find // triangular number function triangular_series( $n ) { $i ; $j = 1; $k = 1; // For each iteration increase j // by 1 and add it into k for ( $i = 1; $i <= $n ; $i ++) { echo ( " " . $k . " " ); // Increasing j by 1 $j = $j + 1; // Add value of j into k and update k $k = $k + $j ; } } // Driver Code $n = 5; triangular_series( $n ); // This code is contributed by Ajit. ?> |
Javascript
<script> // javascript Program to find Triangular Number Series // Function to find triangular number function triangular_series( n) { let i, j = 1, k = 1; // For each iteration increase j by 1 // and add it into k for (i = 1; i <= n; i++) { document.write(k+ " " ); j = j + 1; // Increasing j by 1 k = k + j; // Add value of j into k and update k } } // Driven Function let n = 5; triangular_series(n); // This code is contributed by Rajput-Ji </script> |
Output :
1 3 6 10 15
Time complexity : O(n)
Auxiliary Space : O(1), since no extra space has been taken.
Alternate Solution :
The solution is based on the fact that i-th Triangular number is sum of first i natural numbers, i.e., i * (i + 1)/2
C++
// C++ Program to find Triangular Number Series #include <iostream> using namespace std; // Function to find triangular number void triangular_series( int n) { for ( int i = 1; i <= n; i++) cout << i*(i+1)/2 << " " ; } // Driven Function int main() { int n = 5; triangular_series(n); return 0; } //this code is contributed by aditya942003patil |
C
// C Program to find Triangular Number Series #include <stdio.h> // Function to find triangular number void triangular_series( int n) { for ( int i = 1; i <= n; i++) printf ( " %d " , i*(i+1)/2); } // Driven Function int main() { int n = 5; triangular_series(n); return 0; } |
Java
//Java program to print triangular number series till n import java.util.*; class GFG { // Function to find triangular number static void triangular_series( int n) { for ( int i = 1 ; i <= n; i++) System.out.printf( "%d " ;, i*(i+ 1 )/ 2 ); } // Driver function public static void main(String[] args) { int n = 5 ; triangular_series(n); } } //This code is contributed by Arnav Kr. Mandal. |
Python3
# Python3 code to find Triangular # Number Series def triangular_series(n): for i in range ( 1 , n + 1 ): print ( i * (i + 1 ) / / 2 ,end = ' ' ) # Driver code n = 5 triangular_series(n) # This code is contributed by ihritik |
C#
// C# program to print triangular // number series till n using System; class GFG { // Function to find triangular number static void triangular_series( int n) { for ( int i = 1; i <= n; i++) Console.Write(i * (i + 1) / 2 + " " ); } // Driver Code public static void Main() { int n = 5; triangular_series(n); } } // This code is contributed by vt_m. |
PHP
<?php // PHP Program to find // Triangular Number Series // Function to find // triangular number function triangular_series( $n ) { for ( $i = 1; $i <= $n ; $i ++) echo ( " " . $i * ( $i + 1) / 2 . " " ); } // Driver Code $n = 5; triangular_series( $n ); // This code is contributed by Ajit. ?> |
Javascript
<script> // javascript Program to find Triangular Number Series // Function to find triangular number function triangular_series( n) { for (let i = 1; i <= n; i++) document.write( " " + i * (i + 1)/2); } // Driven Function let n = 5; triangular_series(n); // This code is contributed by gauravrajput1 </script> |
Output :
1 3 6 10 15
Time complexity : O(n)
Auxiliary Space : O(1) , since no extra space has been taken.
Please Login to comment...