Program for harmonic mean of numbers
Given an array of elements, find harmonic mean of numbers.
Examples:
Input : arr[] = {2.0, 1.0} Output : 1.3333 Harmonic mean = 2/(1/2.0 + 1/1.0) = (2 * 2)/3 = 1.333 Input : arr[] = {13.5, 14.5, 14.8, 15.2, 16.1} Output : 14.7707
Harmonic mean is used when average of rates is required, below is the formula.
Harmonic mean of n numbers x1, x2,
x3, . . ., xn can written as below.
Harmonic mean = n / ((1/x1) + (1/x2) + (1/x3) + . . . + (1/xn))
Below is the implementation of Harmonic Mean.
C++
// CPP program to find harmonic mean of numbers. #include <bits/stdc++.h> using namespace std; // Function that returns harmonic mean. float harmonicMean( float arr[], int n) { // Declare sum variables and initialize with zero. float sum = 0; for ( int i = 0; i < n; i++) sum = sum + ( float )1 / arr[i]; return ( float )n / sum; } // Driver code int main() { float arr[] = { 13.5, 14.5, 14.8, 15.2, 16.1 }; int n = sizeof (arr) / sizeof (arr[0]); cout << harmonicMean(arr, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program to find harmonic mean of numbers. #include <stdio.h> // Function that returns harmonic mean. float harmonicMean( float arr[], int n) { // Declare sum variables and initialize with zero. float sum = 0; for ( int i = 0; i < n; i++) sum = sum + ( float )1 / arr[i]; return ( float )n / sum; } // Driver code int main() { float arr[] = { 13.5, 14.5, 14.8, 15.2, 16.1 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "%f" ,harmonicMean(arr, n)); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// JAVA program to find harmonic mean of numbers. import java.io.*; class GFG { // Function that returns harmonic mean. static float harmonicMean( float arr[], int n) { // Declare sum variables and initialize with zero float sum = 0 ; for ( int i = 0 ; i < n; i++) sum = sum + ( float ) 1 / arr[i]; return ( float )n / sum; } // Driver code public static void main(String args[]) { float arr[] = { 13 .5f, 14 .5f, 14 .8f, 15 .2f, 16 .1f }; int n = arr.length; System.out.println(harmonicMean(arr, n)); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python 3 program to find harmonic # mean of numbers. # Function that returns harmonic mean. def harmonicMean(arr, n) : # Declare sum variables and # initialize with zero. sm = 0 for i in range ( 0 , n) : sm = sm + ( 1 ) / arr[i]; return n / sm # Driver code arr = [ 13.5 , 14.5 , 14.8 , 15.2 , 16.1 ]; n = len (arr) print (harmonicMean(arr, n)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find harmonic // mean of numbers. using System; class GFG { // Function that returns harmonic mean. static float harmonicMean( float [] arr, int n) { // Declare sum variables and // initialize with zero float sum = 0; for ( int i = 0; i < n; i++) sum = sum + ( float )1 / arr[i]; return ( float )n / sum; } // Driver code public static void Main() { float [] arr = { 13.5f, 14.5f, 14.8f, 15.2f, 16.1f }; int n = arr.Length; Console.WriteLine(harmonicMean(arr, n)); } } /*This code is contributed by vt_m.*/ |
PHP
<?php // PHP program to find // harmonic mean of numbers. // Function that returns // harmonic mean. function harmonicMean( $arr , $n ) { // Declare sum variables and // initialize with zero $sum = 0; for ( $i = 0; $i < $n ; $i ++) $sum = $sum + (float) (1 / $arr [ $i ]); return (float)( $n / $sum ); } // Driver code $arr = array (13.5, 14.5, 14.8, 15.2, 16.1); $n = sizeof( $arr ); echo (harmonicMean( $arr , $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find harmonic mean of numbers. // Function that returns harmonic mean. function harmonicMean(arr, n) { // Declare sum variables and initialize // with zero. let sum = 0; for (let i = 0; i < n; i++) sum = sum + (1 / arr[i]); return n/sum; } // Driver code let arr = [ 13.5, 14.5, 14.8, 15.2, 16.1 ]; let n = arr.length; document.write(harmonicMean(arr, n)); </script> |
Output:
14.7707
Time Complexity: O(n)
Auxiliary Space: O(1), since no extra space has been taken.
What if we are given elements and their frequencies?
If we are given n numbers and every number has some frequency then simply we use formula
Harmonic mean = (Frequency-Sum) /((f1/x1) + (f2/x2) + (f3/x3) + . . . + (fn/xn))
Where f1, f2, f3, . . ., fn are the frequencies of elements and x1, 2, x3, . . ., xn are the elements of array.
Frequency-Sum = f1 + f2 + f3, . . ., fn
Examples:
Input : num[] = {13, 14, 15, 16, 17} freq[] = {2, 5, 13, 7, 3} Output : 15.0631
C++
// C++ program to find harmonic mean. #include <bits/stdc++.h> using namespace std; // Function that returns harmonic mean. float harmonicMean( int arr[], int freq[], int n) { float sum = 0, frequency_sum = 0; for ( int i = 0; i < n; i++) { sum = sum + ( float )freq[i] / arr[i]; frequency_sum = frequency_sum + freq[i]; } return frequency_sum / sum; } // Driver code int main() { int num[] = { 13, 14, 15, 16, 17 }; int freq[] = { 2, 5, 13, 7, 3 }; int n = sizeof (num) / sizeof (num[0]); cout << harmonicMean(num, freq, n); return 0; } |
Java
// JAVA program to find harmonic mean. class GFG { // Function that returns harmonic mean. static float harmonicMean( int arr[], int freq[], int n) { float sum = 0 , frequency_sum = 0 ; for ( int i = 0 ; i < n; i++) { sum = sum + ( float )freq[i] / arr[i]; frequency_sum = frequency_sum + freq[i]; } return (frequency_sum / sum); } // Driver code public static void main(String args[]) { int num[] = { 13 , 14 , 15 , 16 , 17 }; int freq[] = { 2 , 5 , 13 , 7 , 3 }; int n = num.length; System.out.println(harmonicMean(num, freq, n)); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python 3 program to find harmonic mean. # Function that returns harmonic mean. def harmonicMean(arr, freq, n) : sm = 0 frequency_sum = 0 for i in range ( 0 ,n) : sm = sm + freq[i] / arr[i] frequency_sum = frequency_sum + freq[i] return ( round (frequency_sum / sm, 4 )) # Driver code num = [ 13 , 14 , 15 , 16 , 17 ] freq = [ 2 , 5 , 13 , 7 , 3 ] n = len (num) print (harmonicMean(num, freq, n)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find harmonic mean. using System; class GFG { // Function that returns harmonic mean. static float harmonicMean( int [] arr, int [] freq, int n) { float sum = 0, frequency_sum = 0; for ( int i = 0; i < n; i++) { sum = sum + ( float )freq[i] / arr[i]; frequency_sum = frequency_sum + freq[i]; } return (frequency_sum / sum); } // Driver code public static void Main() { int [] num = { 13, 14, 15, 16, 17 }; int [] freq = { 2, 5, 13, 7, 3 }; int n = num.Length; Console.WriteLine(harmonicMean(num, freq, n)); } } /*This code is contributed by vt_m.*/ |
PHP
<?php // PHP program to find // harmonic mean. // Function that returns // harmonic mean. function harmonicMean( $arr , $freq , $n ) { $sum = 0; $frequency_sum = 0; for ( $i = 0; $i < $n ; $i ++) { $sum = $sum + (float) ( $freq [ $i ] / $arr [ $i ]); $frequency_sum = $frequency_sum + $freq [ $i ]; } return ( $frequency_sum / $sum ); } // Driver code $num = array (13, 14, 15, 16, 17); $freq = array (2, 5, 13, 7, 3); $n = sizeof( $num ); echo (harmonicMean( $num , $freq , $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find harmonic mean. // Function that returns harmonic mean. function harmonicMean(arr, freq, n) { let sum = 0, frequency_sum = 0; for (let i = 0; i < n; i++) { sum = sum + (freq[i] / arr[i]); frequency_sum = frequency_sum + freq[i]; } return frequency_sum / sum; } // Driver code let num = [ 13, 14, 15, 16, 17 ]; let freq = [ 2, 5, 13, 7, 3 ]; let n = num.length; document.write(harmonicMean(num, freq, n)); </script> |
Output:
15.0631
Time Complexity: O(n)
Auxiliary Space: O(1)
Harmonic mean of numbers using harmonic_mean() in Python:
Simple Python program to find harmonic mean using harmonic_mean() function.
Python3
#'harmonic_mean()' new function added in 'Python3.6' onwards. #Program calculates Harmonic Mean using harmonic_mean() #imports Python statistics library import statistics def harmonic_mean(): list = [ 13.5 , 14.5 , 14.8 , 15.2 , 16.1 ] print (statistics.harmonic_mean( list )) #Driver code harmonic_mean() #This code is contributed by 'Abhishek Agrawal'. |
Output: 14.770680729373778
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Dharmendra Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...