Skip to content
Related Articles

Related Articles

Program for average of an array without running into overflow

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 15 Jun, 2021

Given an array arr[] of size N, the task is to find the average of the array elements without running into overflow.

Examples:

Input: arr[] = { INT_MAX, INT_MAX }
Output:
Average by Standard method: -1.0000000000
Average by Efficient method: 2147483647.0000000000
Explanation: 
The average of the two numbers by standard method is (sum / 2).
Since the sum of the two numbers exceed INT_MAX, the obtained output by standard method is incorrect.

Input: arr[] = { INT_MAX, 1, 2 }
Output:
Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539

 

Approach: The given problem can be solved based on the following observations: 

  • The average of N array elements can be obtained by dividing the sum of the array elements by N. But, calculating sum of the array arr[] may lead to integer overflow, if the array contains large integers.
  • Therefore, average of the the array can be calculated efficiently by the following steps:
    • Traverse the array, using a variable i over the range of indices [0, N – 1] 
    • Update avg = (avg+ (arr[i] – avg)/(i+1))

Follow the steps below to solve the problem:

  • Initialize two variables, say sum as 0 and avg as 0, to store the sum and average of the array elements respectively.
  • Traverse the array arr[], update avg = avg + (arr[i] – avg) / (i + 1) and update sum = sum + arr[i].
  • After completing the above steps, print the average by the standard method, i.e. sum / N and print the average by the efficient method, i.e. avg

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate average of
// an array using standard method
double average(int arr[], int N)
{
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return (double)sum / N;
}
 
// Function to calculate average of
// an array using efficient method
double mean(int arr[], int N)
{
    // Store the average of the array
    double avg = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // Update avg
        avg += (arr[i] - avg) / (i + 1);
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
int main()
{
    // Input
    int arr[] = { INT_MAX, 1, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << "Average by Standard method: " << fixed
         << setprecision(10) << average(arr, N) << endl;
 
    cout << "Average by Efficient method: " << fixed
         << setprecision(10) << mean(arr, N) << endl;
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
  
// Function to calculate average of
// an array using standard method
static Double average(int arr[], int N)
{
   
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return Double.valueOf(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
static Double mean(int arr[], int N)
{
   
    // Store the average of the array
    Double avg = 0.0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
    {
 
        // Update avg
        avg += Double.valueOf((arr[i] - avg) / (i + 1));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
public static void main(String args[])
{
   
    // Input
    int arr[] = {Integer.MAX_VALUE, 1, 2 };
    int N = arr.length;
   
    // Function call
    System.out.println("Average by Standard method: "+ String.format("%.10f", average(arr, N)));
    System.out.println("Average by Efficient method: "+ String.format("%.10f", mean(arr, N)));
}
}
 
// This code is contributed by ipg2016107.


Python3




# Python3 program for the above approach
import sys
 
# Function to calculate average of
# an array using standard method
def average(arr, N):
     
    # Stores the sum of array
    sum = 0
 
    # Find the sum of the array
    for i in range(N):
        sum += arr[i]
 
    # Return the average
    return sum // N * 1.0 - 1
 
# Function to calculate average of
# an array using efficient method
def mean(arr, N):
     
    # Store the average of the array
    avg = 0
 
    # Traverse the array arr[]
    for i in range(N):
         
        # Update avg
        avg += (arr[i] - avg) / (i + 1)
 
    # Return avg
    return round(avg, 7)
 
# Driver Code
if __name__ == '__main__':
     
    # Input
    arr = [2147483647, 1, 2]
    N = len(arr)
 
    # Function call
    print("Average by Standard method: ","{:.10f}".format(
        -1.0 * average(arr, N)))
 
    print("Average by Efficient method: ","{:.10f}".format(
        mean(arr, N)))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate average of
// an array using standard method
static double average(int[] arr, int N)
{
     
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for(int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return (double)(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
static double mean(int[] arr, int N)
{
 
    // Store the average of the array
    double avg = 0.0;
 
    // Traverse the array arr[]
    for(int i = 0; i < N; i++)
    {
         
        // Update avg
        avg += ((double)((arr[i] - avg) / (i + 1)));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
static public void Main()
{
 
    // Input
    int[] arr = { Int32.MaxValue, 1, 2 };
    int N = arr.Length;
 
    // Function call
    Console.WriteLine("Average by Standard method: " +
         (average(arr, N)).ToString("F10"));
    Console.WriteLine("Average by Efficient method: " +
         (mean(arr, N)).ToString("F10"));
}
}
 
// This code is contributed by Dharanendra L V.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate average of
// an array using standard method
function average(arr, N)
{
    // Stores the sum of array
    var sum = 0;
 
    // Find the sum of the array
    for(var i = 0; i < N; i++)
        sum += arr[i];
 
    if(sum>2147483647)
    {
        sum = -2147483647 + (sum - 2147483649)
    }
 
    // Return the average
    return parseInt(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
function mean(arr, N)
{
    // Store the average of the array
    var avg = 0;
 
    // Traverse the array arr[]
    for(var i = 0; i < N; i++) {
 
        // Update avg
        avg += parseFloat((arr[i] - avg) / (i + 1));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
// Input
var arr = [2147483647, 1, 2 ];
var N = arr.length
// Function call
document.write( "Average by Standard method: " + average(arr, N).toFixed(10) + "<br>");
document.write( "Average by Efficient method: " + mean(arr, N).toFixed(10)+ "<br>");
 
</script>


Output: 

Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!