Program to find the sum of a Series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + … + (n*n)
You have been given a series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + … + (n*n), find out the sum of the series till nth term.
Examples :
Input : n = 3 Output : 14 Explanation : (1*1) + (2*2) + (3*3) Input : n = 5 Output : 55 Explanation : (1*1) + (2*2) + (3*3) + (4*4) + (5*5)
C++
// CPP program to calculate the following series #include<iostream> using namespace std; // Function to calculate the following series int Series( int n) { int i; int sums = 0; for (i = 1; i <= n; i++) sums += (i * i); return sums; } // Driver Code int main() { int n = 3; int res = Series(n); cout<<res<<endl; } |
C
// C program to calculate the following series #include <stdio.h> // Function to calculate the following series int Series( int n) { int i; int sums = 0; for (i = 1; i <= n; i++) sums += (i * i); return sums; } // Driver Code int main() { int n = 3; int res = Series(n); printf ( "%d" , res); } |
Java
// Java program to calculate the following series import java.io.*; class GFG { // Function to calculate the following series static int Series( int n) { int i; int sums = 0 ; for (i = 1 ; i <= n; i++) sums += (i * i); return sums; } // Driver Code public static void main(String[] args) { int n = 3 ; int res = Series(n); System.out.println(res); } } |
Python
# Python program to calculate the following series def Series(n): sums = 0 for i in range ( 1 , n + 1 ): sums + = (i * i); return sums # Driver Code n = 3 res = Series(n) print (res) |
C#
// C# program to calculate the following series using System; class GFG { // Function to calculate the following series static int Series( int n) { int i; int sums = 0; for (i = 1; i <= n; i++) sums += (i * i); return sums; } // Driver Code public static void Main() { int n = 3; int res = Series(n); Console.Write(res); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to calculate // the following series // Function to calculate the // following series function Series( $n ) { $i ; $sums = 0; for ( $i = 1; $i <= $n ; $i ++) $sums += ( $i * $i ); return $sums ; } // Driver Code $n = 3; $res = Series( $n ); echo ( $res ); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to calculate the following series // Function to calculate the following series function Series( n) { let i; let sums = 0; for (i = 1; i <= n; i++) sums += (i * i); return sums; } // Driver Code let n = 3; let res = Series(n); document.write(res); // This code contributed by Princi Singh </script> |
Output
14
Time Complexity: O(n)
Auxiliary Space: O(1)
Efficient Approach:
As we know the sum of squares of the first N natural numbers = (N*(N+1)*(2*N+1))/6.
Below is the implementation of this approach:
C++
// CPP program to calculate the following series #include<iostream> using namespace std; // Function to calculate the following series int Series( int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver Code int main() { int n = 3; int res = Series(n); cout<<res<<endl; } |
Java
// Java program to calculate the following series import java.io.*; class GFG { // Function to calculate the following series static int Series( int n) { return (n * (n + 1 ) * ( 2 * n + 1 )) / 6 ; } // Driver function public static void main (String[] args) { int n = 3 ; int res = Series(n); System.out.println(res); } } // This code is contributed by Aman Kumar. |
Python3
# Python program to calculate the following series # Function to calculate the following series def Series(n): return (n * (n + 1 ) * ( 2 * n + 1 )) / 6 n = 3 res = Series(n) print ( int (res)) # This code is contributed by lokeshmvs21. |
C#
using System; public class GFG { static int Series( int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } static public void Main() { int n = 3; Console.Write(Series(n)); } } // This code is contributed by garg28harsh. |
Javascript
// Javascript program to calculate the following series // Function to calculate the following series function Series(n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver Code let n = 3; console.log(Series(n)); // This code is contributed by garg28harsh. |
Output
14
Time Complexity: O(1)
Auxiliary Space: O(1)
Please refer below post for O(1) solution.
Sum of squares of first n natural numbers
Please Login to comment...