Given two coordinates, find the slope of a straight line.
Examples:
Input : x1 = 4, y1 = 2,
x2 = 2, y2 = 5
Output : Slope is -1.5
Approach: To calculate the slope of a line you need only two points from that line, (x1, y1) and (x2, y2). The equation used to calculate the slope from two points is:

Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
float slope( float x1, float y1, float x2, float y2)
{
return (y2 - y1) / (x2 - x1);
}
int main()
{
float x1 = 4, y1 = 2;
float x2 = 2, y2 = 5;
cout << "Slope is: "
<< slope(x1, y1, x2, y2);
return 0;
}
|
Java
import java.io.*;
class GFG {
static float slope( float x1, float y1,
float x2, float y2)
{
return (y2 - y1) / (x2 - x1);
}
public static void main(String[] args)
{
float x1 = 4 , y1 = 2 ;
float x2 = 2 , y2 = 5 ;
System.out.println( "Slope is " +
slope(x1, y1, x2, y2));
}
}
|
Python
def slope(x1, y1, x2, y2):
return ( float )(y2 - y1) / (x2 - x1)
x1 = 4
y1 = 2
x2 = 2
y2 = 5
print "Slope is :" , slope(x1, y1, x2, y2)
|
C#
using System;
class GFG
{
static float slope( float x1, float y1,
float x2, float y2)
{
return (y2 - y1) / (x2 - x1);
}
public static void Main()
{
float x1 = 4, y1 = 2;
float x2 = 2, y2 = 5;
Console.WriteLine( "Slope is " +
slope(x1, y1, x2, y2));
}
}
|
PHP
<?php
function slope( $x1 , $y1 , $x2 , $y2 )
{
return ( $y2 - $y1 ) /
( $x2 - $x1 );
}
$x1 = 4;
$y1 = 2;
$x2 = 2;
$y2 = 5;
echo "Slope is: "
, slope( $x1 , $y1 ,
$x2 , $y2 );
?>
|
Javascript
<script>
function slope(x1, y1,
x2, y2)
{
return (y2 - y1) / (x2 - x1);
}
let x1 = 4, y1 = 2;
let x2 = 2, y2 = 5;
document.write( "Slope is " +
slope(x1, y1, x2, y2));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Special Case: The above code will throw a runtime error when int the function x1 is equal to x2 (x1==x2). In that case, our denominator will become zero(0). To avoid that condition, we will add a condition in the slope function.
C++
#include <bits/stdc++.h>
using namespace std;
float slope( float x1, float y1, float x2, float y2)
{
if (x1 == x2)
return INT_MAX;
return (y2 - y1) / (x2 - x1);
}
int main()
{
float x1 = 4, y1 = 2;
float x2 = 2, y2 = 5;
cout << "Slope is: "
<< slope(x1, y1, x2, y2);
return 0;
}
|
Java
import java.util.*;
class GFG {
static float slope( float x1, float y1, float x2, float y2) {
if (x1 == x2)
return Integer.MAX_VALUE;
return (y2 - y1) / (x2 - x1);
}
public static void main(String[] args) {
float x1 = 4 , y1 = 2 ;
float x2 = 2 , y2 = 5 ;
System.out.print( "Slope is: " + slope(x1, y1, x2, y2));
}
}
|
Python3
import sys
def slope(x1, y1, x2, y2):
if x1 = = x2:
return (sys.maxsize)
return ((y2 - y1) / (x2 - x1))
x1 = 4
y1 = 2
x2 = 2
y2 = 5
print ( "Slope is :" , slope( 4 , 2 , 2 , 5 ))
|
C#
using System;
class GFG {
static float slope( float x1, float y1, float x2, float y2) {
if (x1 == x2)
return 1000000000;
return (y2 - y1) / (x2 - x1);
}
public static void Main( string [] args) {
float x1 = 4, y1 = 2;
float x2 = 2, y2 = 5;
Console.Write( "Slope is: " + slope(x1, y1, x2, y2));
}
}
|
Javascript
<script>
function slope(x1 , y1 , x2 , y2) {
if (x1 == x2)
return Number.MAX_VALUE;
return (y2 - y1) / (x2 - x1);
}
var x1 = 4, y1 = 2;
var x2 = 2, y2 = 5;
document.write( "Slope is: " + slope(x1, y1, x2, y2));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)