GFG App
Open App
Browser
Continue

# Program to find GCD of floating point numbers

The greatest common divisor (GCD) of two or more numbers, which are not all zero, is the largest positive number that divides each of the numbers.
Example:

Input  : 0.3, 0.9
Output : 0.3

Input  : 0.48, 0.108
Output : 0.012

The simplest approach to solve this problem is :
a=1.20
b=22.5
Expressing each of the numbers without decimals as the product of primes we get:
120
2250
Now, H.C.F. of 120 and 2250 = 2*3*5=30
Therefore,the H.C.F. of 1.20 and 22.5=0.30
(taking 2 decimal places)
We can do this using the Euclidean algorithm. This algorithm indicates that if the smaller number is subtracted from a bigger number, GCD of two numbers doesnâ€™t change.

## C++

 // CPP code for finding the GCD of two floating // numbers. #include using namespace std;   // Recursive function to return gcd of a and b double gcd(double a, double b) {     if (a < b)         return gcd(b, a);       // base case     if (fabs(b) < 0.001)         return a;       else         return (gcd(b, a - floor(a / b) * b)); }   // Driver Function. int main() {     double a = 1.20, b = 22.5;     cout << gcd(a, b);     return 0; }

## Java

 // JAVA code for finding the GCD of // two floating numbers. import java.io.*;   class GFG {           // Recursive function to return gcd     // of a and b     static double gcd(double a, double b)     {         if (a < b)             return gcd(b, a);                // base case         if (Math.abs(b) < 0.001)             return a;                else             return (gcd(b, a -                    Math.floor(a / b) * b));     }            // Driver Function.     public static void main(String args[])     {         double a = 1.20, b = 22.5;         System.out.printf("%.1f" ,gcd(a, b));     } }   /*This code is contributed by Nikita Tiwari.*/

## Python

 # Python code for finding the GCD of # two floating numbers.   import math   # Recursive function to return gcd # of a and b def gcd(a,b) :     if (a < b) :         return gcd(b, a)           # base case     if (abs(b) < 0.001) :         return a     else :         return (gcd(b, a - math.floor(a / b) * b))              # Driver Function. a = 1.20 b = 22.5 print('{0:.1f}'.format(gcd(a, b)))   # This code is contributed by Nikita Tiwari.

## C#

 // C# code for finding the GCD of // two floating numbers. using System;   class GFG {           // Recursive function to return gcd     // of a and b     static float  gcd(double a, double b)     {         if (a < b)             return gcd(b, a);               // base case         if (Math.Abs(b) < 0.001)             return (float)a;               else             return (float)(gcd(b, a -                 Math.Floor(a / b) * b));     }           // Driver Function.     public static void Main()     {         double a = 1.20, b = 22.5;           Console.WriteLine(gcd(a, b));     } }   // This code is contributed by vt_m.



## Javascript



Output:

0.3

Time Complexity: O(log n)
Auxiliary Space: O(log n)

This article is contributed by Aarti_Rathi and Abhishek Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.