Program for Derivative of a Polynomial
Given a polynomial as a string and a value. Evaluate polynomial’s derivative for the given value.
Note: The input format is such that there is a white space between a term and the ‘+’ symbol
The derivative of p(x) = ax^n is p'(x) = a*n*x^(n-1)
Also, if p(x) = p1(x) + p2(x)
Here p1 and p2 are polynomials too
p'(x) = p1′(x) + p2′(x)
Input : 3x^3 + 4x^2 + 6x^1 + 89x^0 2 Output :58 Explanation : Derivative of given polynomial is : 9x^2 + 8x^1 + 6 Now put x = 2 9*4 + 8*2 + 6 = 36 + 16 + 6 = 58 Input : 1x^3 3 Output : 27
We split the input string into tokens and for each term calculate the derivative separately for each term and add them to get the result.
C++
// C++ program to find value of derivative of // a polynomial. #include <bits/stdc++.h> using namespace std; long long derivativeTerm(string pTerm, long long val) { // Get coefficient string coeffStr = "" ; int i; for (i = 0; pTerm[i] != 'x' ; i++) coeffStr.push_back(pTerm[i]); long long coeff = atol (coeffStr.c_str()); // Get Power (Skip 2 characters for x and ^) string powStr = "" ; for (i = i + 2; i != pTerm.size(); i++) powStr.push_back(pTerm[i]); long long power = atol (powStr.c_str()); // For ax^n, we return anx^(n-1) return coeff * power * pow (val, power - 1); } long long derivativeVal(string& poly, int val) { long long ans = 0; // We use istringstream to get input in tokens istringstream is(poly); string pTerm; while (is >> pTerm) { // If the token is equal to '+' then // continue with the string if (pTerm == "+" ) continue ; // Otherwise find the derivative of that // particular term else ans = (ans + derivativeTerm(pTerm, val)); } return ans; } // Driver code int main() { string str = "4x^3 + 3x^1 + 2x^2" ; int val = 2; cout << derivativeVal(str, val); return 0; } |
Java
// Java program to find value of derivative of // a polynomial import java.io.*; class GFG { static long derivativeTerm(String pTerm, long val) { // Get coefficient String coeffStr = "" ; int i; for (i = 0 ; pTerm.charAt(i) != 'x' ; i++) { if (pTerm.charAt(i)== ' ' ) continue ; coeffStr += (pTerm.charAt(i)); } long coeff = Long.parseLong(coeffStr); // Get Power (Skip 2 characters for x and ^) String powStr = "" ; for (i = i + 2 ; i != pTerm.length() && pTerm.charAt(i) != ' ' ; i++) { powStr += pTerm.charAt(i); } long power=Long.parseLong(powStr); // For ax^n, we return a(n)x^(n-1) return coeff * power * ( long )Math.pow(val, power - 1 ); } static long derivativeVal(String poly, int val) { long ans = 0 ; int i = 0 ; String[] stSplit = poly.split( "\\+" ); while (i<stSplit.length) { ans = (ans +derivativeTerm(stSplit[i], val)); i++; } return ans; } // Driver code public static void main (String[] args) { String str = "4x^3 + 3x^1 + 2x^2" ; int val = 2 ; System.out.println(derivativeVal(str, val)); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program to find # value of derivative of # a polynomial. def derivativeTerm(pTerm, val): # Get coefficient coeffStr = "" i = 0 while (i < len (pTerm) and pTerm[i] ! = 'x' ): coeffStr + = (pTerm[i]) i + = 1 coeff = int (coeffStr) # Get Power (Skip 2 characters # for x and ^) powStr = "" j = i + 2 while j < len (pTerm): powStr + = (pTerm[j]) j + = 1 power = int (powStr) # For ax^n, we return # a(n)x^(n-1) return (coeff * power * pow (val, power - 1 )) def derivativeVal(poly, val): ans = 0 i = 0 stSplit = poly.split( "+" ) while (i < len (stSplit)): ans = (ans + derivativeTerm(stSplit[i], val)) i + = 1 return ans # Driver code if __name__ = = "__main__" : st = "4x^3 + 3x^1 + 2x^2" val = 2 print (derivativeVal(st, val)) # This code is contributed by Chitranayal |
C#
// C# program to find value of derivative of // a polynomial using System; class GFG{ static long derivativeTerm( string pTerm, long val) { // Get coefficient string coeffStr = "" ; int i; for (i = 0; pTerm[i] != 'x' ; i++) { if (pTerm[i] == ' ' ) continue ; coeffStr += (pTerm[i]); } long coeff = long .Parse(coeffStr); // Get Power (Skip 2 characters for x and ^) string powStr = "" ; for (i = i + 2; i != pTerm.Length && pTerm[i] != ' ' ; i++) { powStr += pTerm[i]; } long power = long .Parse(powStr); // For ax^n, we return a(n)x^(n-1) return coeff * power * ( long )Math.Pow(val, power - 1); } static long derivativeVal( string poly, int val) { long ans = 0; int i = 0; String[] stSplit = poly.Split( "+" ); while (i < stSplit.Length) { ans = (ans +derivativeTerm(stSplit[i], val)); i++; } return ans; } // Driver code static public void Main() { String str = "4x^3 + 3x^1 + 2x^2" ; int val = 2; Console.WriteLine(derivativeVal(str, val)); } } // This code is contributed by rag2127 |
Javascript
<script> // Javascript program to find value of derivative of // a polynomial function derivativeTerm( pTerm,val) { // Get coefficient let coeffStr = "" ; let i; for (i = 0; pTerm[i] != 'x' ; i++) { if (pTerm[i]== ' ' ) continue ; coeffStr += (pTerm[i]); } let coeff = parseInt(coeffStr); // Get Power (Skip 2 characters for x and ^) let powStr = "" ; for (i = i + 2; i != pTerm.length && pTerm[i] != ' ' ; i++) { powStr += pTerm[i]; } let power=parseInt(powStr); // For ax^n, we return a(n)x^(n-1) return coeff * power * Math.pow(val, power - 1); } function derivativeVal(poly,val) { let ans = 0; let i = 0; let stSplit = poly.split( "+" ); while (i<stSplit.length) { ans = (ans +derivativeTerm(stSplit[i], val)); i++; } return ans; } // Driver code let str = "4x^3 + 3x^1 + 2x^2" ; let val = 2; document.write(derivativeVal(str, val)); // This code is contributed by ab2127 </script> |
Output:
59
This article is contributed by Ankit Jain . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...