Program to check if matrix is lower triangular
Given a square matrix and the task is to check the matrix is in lower triangular form or not. A square matrix is called lower triangular if all the entries above the main diagonal are zero.
Examples:
Input : mat[4][4] = {{1, 0, 0, 0}, {1, 4, 0, 0}, {4, 6, 2, 0}, {0, 4, 7, 6}}; Output : Matrix is in lower triangular form. Input : mat[4][4] = {{1, 0, 0, 0}, {4, 3, 0, 1}, {7, 9, 2, 0}, {8, 5, 3, 6}}; Output : Matrix is not in lower triangular form.
Implementation:
C++
// Program to check lower // triangular matrix. #include <bits/stdc++.h> #define N 4 using namespace std; // Function to check matrix is in // lower triangular form or not. bool isLowerTriangularMatrix( int mat[N][N]) { for ( int i = 0; i < N-1; i++) for ( int j = i + 1; j < N; j++) if (mat[i][j] != 0) return false ; return true ; } // Driver function. int main() { int mat[N][N] = { { 1, 0, 0, 0 }, { 1, 4, 0, 0 }, { 4, 6, 2, 0 }, { 0, 4, 7, 6 } }; // Function call if (isLowerTriangularMatrix(mat)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java Program to check for // a lower triangular matrix. import java.io.*; class Lower_triangular { int N = 4 ; // Function to check matrix is // in lower triangular form or not. boolean isLowerTriangularMatrix( int mat[][]) { for ( int i = 0 ; i < N- 1 ; i++) for ( int j = i + 1 ; j < N; j++) if (mat[i][j] != 0 ) return false ; return true ; } // Driver function. public static void main(String args[]) { Lower_triangular ob = new Lower_triangular(); int mat[][] = { { 1 , 0 , 0 , 0 }, { 1 , 4 , 0 , 0 }, { 4 , 6 , 2 , 0 }, { 0 , 4 , 7 , 6 } }; // Function call if (ob.isLowerTriangularMatrix(mat)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Anshika Goyal. |
Python3
# Python3 Program to check # lower triangular matrix. # Function to check matrix # is in lower triangular def islowertriangular(M): for i in range ( 0 , len (M)): for j in range (i + 1 , len (M)): if (M[i][j] ! = 0 ): return False return True # Driver function. M = [[ 1 , 0 , 0 , 0 ], [ 1 , 4 , 0 , 0 ], [ 4 , 6 , 2 , 0 ], [ 0 , 4 , 7 , 6 ]] if islowertriangular(M): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Anurag Rawat |
C#
// C# program to check for // a lower triangular matrix. using System; class Lower_triangular { int N = 4; // Function to check matrix is // in lower triangular form or not. bool isLowerTriangularMatrix( int [, ] mat) { for ( int i = 0; i < N; i++) for ( int j = i + 1; j < N; j++) if (mat[i, j] != 0) return false ; return true ; } // Driver function. public static void Main() { Lower_triangular ob = new Lower_triangular(); int [, ] mat = { { 1, 0, 0, 0 }, { 1, 4, 0, 0 }, { 4, 6, 2, 0 }, { 0, 4, 7, 6 } }; // Function call if (ob.isLowerTriangularMatrix(mat)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by vt_m. |
PHP
<?php // PHP Program to check lower // triangular matrix. $N = 4; // Function to check matrix is in // lower triangular form or not. function isLowerTriangularMatrix( $mat ) { global $N ; for ( $i = 0; $i < $N ; $i ++) for ( $j = $i + 1; $j < $N ; $j ++) if ( $mat [ $i ][ $j ] != 0) return false; return true; } // Driver Code $mat = array ( array ( 1, 0, 0, 0 ), array ( 1, 4, 0, 0 ), array ( 4, 6, 2, 0 ), array ( 0, 4, 7, 6 )); // Function call if (isLowerTriangularMatrix( $mat )) echo ( "Yes" ); else echo ( "No" ); // This code is contributed by Ajit. ?> |
Javascript
<script> // Java script Program to check for // a lower triangular matrix. let N = 4; // Function to check matrix is // in lower triangular form or not. function isLowerTriangularMatrix(mat) { for (let i = 0; i < N-1; i++) for (let j = i + 1; j < N; j++) if (mat[i][j] != 0) return false ; return true ; } // Driver function. let mat = [[ 1, 0, 0, 0 ], [ 1, 4, 0, 0 ], [ 4, 6, 2, 0 ], [ 0, 4, 7, 6 ]]; // Function call if (isLowerTriangularMatrix(mat)) document.write( "Yes" ); else document.write( "No" ); // contributed by sravan kumar </script> |
Output
Yes
Time Complexity: O(n2), where n represents the number of rows and columns of the matrix.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please Login to comment...