Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Program to check Involutory Matrix

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a matrix and the task is to check matrix is involutory matrix or not. 

Involutory Matrix: A matrix is said to be involutory matrix if matrix multiply by itself return the identity matrix. Involutory matrix is the matrix that is its own inverse. The matrix A is said to be involutory matrix if A * A = I. Where I is the identity matrix. 

Involutory-Matrix

Examples: 

Input : mat[N][N] = {{1, 0, 0},
                     {0, -1, 0},
                     {0, 0, -1}}
Output : Involutory Matrix

Input : mat[N][N] = {{1, 0, 0},
                     {0, 1, 0},
                     {0, 0, 1}} 
Output : Involutory Matrix

Implementation:

C++




// Program to implement involutory matrix.
#include <bits/stdc++.h>
#define N 3
using namespace std;
 
// Function for matrix multiplication.
void multiply(int mat[][N], int res[][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            res[i][j] = 0;
            for (int k = 0; k < N; k++)
                res[i][j] += mat[i][k] * mat[k][j];
        }
    }
}
 
// Function to check involutory matrix.
bool InvolutoryMatrix(int mat[N][N])
{
    int res[N][N];
 
    // multiply function call.
    multiply(mat, res);
 
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if (i == j && res[i][j] != 1)
                return false;
            if (i != j && res[i][j] != 0)
                return false;
        }
    }
    return true;
}
 
// Driver function.
int main()
{
    int mat[N][N] = { { 1, 0, 0 },
                      { 0, -1, 0 },
                      { 0, 0, -1 } };
 
    // Function call. If function return
    // true then if part will execute otherwise
    // else part will execute.
    if (InvolutoryMatrix(mat))
        cout << "Involutory Matrix";
    else
        cout << "Not Involutory Matrix";
 
    return 0;
}


Java




// Java  Program to implement
// involutory matrix.
import java.io.*;
 
class GFG {
     
    static int N = 3;
     
    // Function for matrix multiplication.
    static void multiply(int mat[][], int res[][])
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                res[i][j] = 0;
                for (int k = 0; k < N; k++)
                    res[i][j] += mat[i][k] * mat[k][j];
            }
        }
    }
     
    // Function to check involutory matrix.
    static boolean InvolutoryMatrix(int mat[][])
    {
        int res[][] = new int[N][N];
     
        // multiply function call.
        multiply(mat, res);
     
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                if (i == j && res[i][j] != 1)
                    return false;
                if (i != j && res[i][j] != 0)
                    return false;
            }
        }
        return true;
    }
     
    // Driver function.
    public static void main (String[] args)
    {
         
        int mat[][] = { { 1, 0, 0 },
                        { 0, -1, 0 },
                        { 0, 0, -1 } };
     
        // Function call. If function return
        // true then if part will execute
        // otherwise else part will execute.
        if (InvolutoryMatrix(mat))
            System.out.println ( "Involutory Matrix");
        else
            System.out.println ( "Not Involutory Matrix");
     
             
    }
}
 
// This code is contributed by vt_m


Python3




# Program to implement involutory matrix.
N = 3;
 
# Function for matrix multiplication.
def multiply(mat, res):
 
    for i in range(N):
        for j in range(N):
            res[i][j] = 0;
            for k in range(N):
                res[i][j] += mat[i][k] * mat[k][j];
    return res;
 
# Function to check involutory matrix.
def InvolutoryMatrix(mat):
 
    res=[[0 for i in range(N)]
            for j in range(N)];
 
    # multiply function call.
    res = multiply(mat, res);
 
    for i in range(N):
        for j in range(N):
            if (i == j and res[i][j] != 1):
                return False;
            if (i != j and res[i][j] != 0):
                return False;
    return True;
 
# Driver Code
mat = [[1, 0, 0], [0, -1, 0], [0, 0, -1]];
 
# Function call. If function
# return true then if part
# will execute otherwise
# else part will execute.
if (InvolutoryMatrix(mat)):
    print("Involutory Matrix");
else:
    print("Not Involutory Matrix");
 
# This code is contributed by mits


C#




// C# Program to implement
// involutory matrix.
using System;
 
class GFG {
     
    static int N = 3;
     
    // Function for matrix multiplication.
    static void multiply(int [,]mat, int [,]res)
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                res[i,j] = 0;
                for (int k = 0; k < N; k++)
                    res[i,j] += mat[i,k] * mat[k,j];
            }
        }
    }
     
    // Function to check involutory matrix.
    static bool InvolutoryMatrix(int [,]mat)
    {
        int [,]res = new int[N,N];
     
        // multiply function call.
        multiply(mat, res);
     
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                if (i == j && res[i,j] != 1)
                    return false;
                if (i != j && res[i,j] != 0)
                    return false;
            }
        }
        return true;
    }
     
    // Driver function.
    public static void Main ()
    {
         
        int [,]mat = { { 1, 0, 0 },
                        { 0, -1, 0 },
                        { 0, 0, -1 } };
     
        // Function call. If function return
        // true then if part will execute
        // otherwise else part will execute.
        if (InvolutoryMatrix(mat))
            Console.WriteLine( "Involutory Matrix");
        else
            Console.WriteLine( "Not Involutory Matrix");
     
             
    }
}
 
// This code is contributed by vt_m


PHP




<?php
// Program to implement
// involutory matrix.
 
$N = 3;
 
// Function for matrix
// multiplication.
function multiply($mat, $res)
{
    global $N;
    for ($i = 0; $i < $N; $i++)
    {
        for ($j = 0; $j < $N; $j++)
        {
            $res[$i][$j] = 0;
            for ($k = 0; $k < $N; $k++)
                $res[$i][$j] += $mat[$i][$k] *
                                $mat[$k][$j];
        }
    }
    return $res;
}
 
// Function to check
// involutory matrix.
function InvolutoryMatrix($mat)
{
    global $N;
    $res;
    for ($i = 0; $i < $N; $i++)
        for ($j = 0; $j < $N; $j++)
            $res[$i][$j] = 0;
 
    // multiply function call.
    $res = multiply($mat, $res);
 
    for ($i = 0; $i < $N; $i++)
    {
        for ($j = 0; $j < $N; $j++)
        {
            if ($i == $j &&
                $res[$i][$j] != 1)
                return false;
            if ($i != $j &&
                $res[$i][$j] != 0)
                return false;
        }
    }
    return true;
}
 
// Driver Code
$mat = array(array(1, 0, 0),
             array(0, -1, 0),
             array(0, 0, -1));
 
// Function call. If function
// return true then if part
// will execute otherwise
// else part will execute.
if (InvolutoryMatrix($mat))
    echo "Involutory Matrix";
else
    echo "Not Involutory Matrix";
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript to implement involutory matrix.
var N = 3;
 
// Function for matrix multiplication.
function multiply(mat, res)
{
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < N; j++)
        {
            res[i][j] = 0;
            for(var k = 0; k < N; k++)
                res[i][j] += mat[i][k] * mat[k][j];
        }
    }
}
 
// Function to check involutory matrix.
function InvolutoryMatrix(mat)
{
    var res = Array(N).fill(0).map(
        x => Array(N).fill(0));
 
    // Multiply function call.
    multiply(mat, res);
 
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < N; j++)
        {
            if (i == j && res[i][j] != 1)
                return false;
            if (i != j && res[i][j] != 0)
                return false;
        }
    }
    return true;
}
     
// Driver code
var mat = [ [ 1, 0, 0 ],
            [ 0, -1, 0 ],
            [ 0, 0, -1 ] ];
 
// Function call. If function return
// true then if part will execute
// otherwise else part will execute.
if (InvolutoryMatrix(mat))
    document.write("Involutory Matrix");
else
    document.write("Not Involutory Matrix");
 
// This code is contributed by 29AjayKumar
 
</script>


Output

Involutory Matrix

Time Complexity: O(n3)
Auxiliary Space: O(n2), since n2 extra space has been taken.


My Personal Notes arrow_drop_up
Last Updated : 19 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials