# Probability for three randomly chosen numbers to be in AP

Given a number **n** and an array containing 1 to (2n+1) consecutive numbers. Three elements are chosen at random. Find the probability that the elements chosen are in A.P.

**Examples**:

Input :n = 2Output :0.4Explanation:

The array would be {1, 2, 3, 4, 5}

Out of all elements, triplets which are in AP: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 3, 5}

No of ways to choose elements from the array: 10 (^{5}C_{3})

So, probability = 4/10 = 0.4

Input :n = 5Output :0.1515

The number of ways to select any 3 numbers from (2n+1) numbers are:^{(2n + 1)} C _{3}

Now, for the numbers to be in AP:

with common difference 1—{1, 2, 3}, {2, 3, 4}, {3, 4, 5}…{2n-1, 2n, 2n+1}

with common difference 2—{1, 3, 5}, {2, 4, 6}, {3, 5, 7}…{2n-3, 2n-1, 2n+1}

with common difference n— {1, n+1, 2n+1}

Therefore, Total number of AP group of 3 numbers in (2n+1) numbers are:

(2n – 1)+(2n – 3)+(2n – 5) +…+ 3 + 1 = **n * n** (Sum of first n odd numbers is n * n )

So, probability for 3 randomly chosen numbers in (2n + 1) consecutive numbers to be in AP = (n * n) / ^{(2n + 1)} C _{3} = **3 n / (4 (n * n) – 1)**

Below is the implementation of the above approach:

## C++

`// CPP program to find probability that ` `// 3 randomly chosen numbers form AP.` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// function to calculate probability` `double` `procal(` `int` `n)` `{` ` ` `return` `(3.0 * n) / (4.0 * (n * n) - 1);` `}` `// Driver code to run above function` `int` `main()` `{` ` ` `int` `a[] = { 1, 2, 3, 4, 5 };` ` ` `int` `n = ` `sizeof` `(a)/` `sizeof` `(a[0]);` ` ` `cout << procal(n);` ` ` `return` `0;` `}` |

## Java

`// Java program to find probability that` `// 3 randomly chosen numbers form AP.` `class` `GFG {` ` ` ` ` `// function to calculate probability` ` ` `static` `double` `procal(` `int` `n)` ` ` `{` ` ` `return` `(` `3.0` `* n) / (` `4.0` `* (n * n) - ` `1` `);` ` ` `}` ` ` `// Driver code to run above function` ` ` `public` `static` `void` `main(String arg[])` ` ` `{` ` ` `int` `a[] = { ` `1` `, ` `2` `, ` `3` `, ` `4` `, ` `5` `};` ` ` `int` `n = a.length;` ` ` `System.out.print(Math.round(procal(n) * ` `1000000.0` `) / ` `1000000.0` `);` ` ` `}` `}` `// This code is contributed by Anant Agarwal.` |

## Python3

`# Python3 program to find probability that ` `# 3 randomly chosen numbers form AP.` `# Function to calculate probability` `def` `procal(n):` ` ` `return` `(` `3.0` `*` `n) ` `/` `(` `4.0` `*` `(n ` `*` `n) ` `-` `1` `)` `# Driver code ` `a ` `=` `[` `1` `, ` `2` `, ` `3` `, ` `4` `, ` `5` `] ` `n ` `=` `len` `(a)` `print` `(` `round` `(procal(n), ` `6` `))` `# This code is contributed by Smitha Dinesh Semwal.` |

## C#

`// C# program to find probability that` `// 3 randomly chosen numbers form AP.` `using` `System;` `class` `GFG {` ` ` ` ` `// function to calculate probability` ` ` `static` `double` `procal(` `int` `n)` ` ` `{` ` ` `return` `(3.0 * n) / (4.0 * (n * n) - 1);` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `[]a = { 1, 2, 3, 4, 5 };` ` ` `int` `n = a.Length;` ` ` `Console.Write(Math.Round(procal(n) *` ` ` `1000000.0) / 1000000.0);` ` ` `}` `}` `// This code is contributed by nitin mittal` |

## PHP

`<?php` `// PHP program to find probability that ` `// 3 randomly chosen numbers form AP.` `// function to calculate probability` `function` `procal(` `$n` `)` `{` ` ` `return` `(3.0 * ` `$n` `) / ` ` ` `(4.0 * (` `$n` `* ` ` ` `$n` `) - 1);` `}` ` ` `// Driver code ` ` ` `$a` `= ` `array` `(1, 2, 3, 4, 5);` ` ` `$n` `= sizeof(` `$a` `);` ` ` `echo` `procal(` `$n` `);` ` ` `// This code is contributed by aj_36` `?>` |

## Javascript

`<script>` `// Javascript program to find probability that ` `// 3 randomly chosen numbers form AP.` `// function to calculate probability` `function` `procal(n)` `{` ` ` `return` `(3.0 * n) / ` ` ` `(4.0 * (n * ` ` ` `n) - 1);` `}` ` ` `// Driver code ` ` ` `let a = [1, 2, 3, 4, 5];` ` ` `let n = a.length;` ` ` `document.write(procal(n));` ` ` `// This code is contributed by _saurabh_jaiswal` `</script>` |

**Output**

0.151515

**Time Complexity:** O(1)**Auxiliary Space: **O(1)

## Please

Loginto comment...