Print the outer cone layer
Given a Binary tree, the task is to print the outer cone layer i.e. combination of layers formed by moving only through the left child from the root and the layer moving only through the right child from the root. Print the left layer in bottom-up manner and the right layer in top-down manner.
Examples:
Input: 12
/ \
15 65
/ \ / \
9 10 45 57
Output: 9 15 12 65 57
Explanation: The left layer is 12, 15, 9.
In bottom up manner it is 9 15 12.
The right layer is 65, 57.
So the overall layer is 9, 15, 12, 65, 57.Input: 12
/
4
/
5
\
3
/
1
Output: 5 4 12.
Explanation: The left layer moving only through the left child is 12, 4, 5.
So the cone layer is 5 4 12
Approach: The problem can be solved based on the following idea:
Find the left view of the tree till you can move only through the left child. Similarly, find the right view of the tree till you can move only through the right child. Then print them as mentioned in the problem.
Follow the steps mentioned below to implement the idea:
Step 1: First try to get the leftmost view of the tree such that at any level if there is a node that is the right child then we should not take that.
Reason: Consider the below Tree:
12
/
4
/
5
\
3
/
1If you try to find the left view of the tree shown above then you will get 12, 4, 5, 3, 1 as the answer. But according to our problem statement, we don’t need 3 and 1.
Step 2: Once you get the left view from step 1, then reverse the values of the left view to get it in a bottom-up manner.
Step 3: Try to get the rightmost view of the tree such that at any level if there is a node that is a left child then do not take that node in the right view. (The reason is similar to step 1 because it may incorporate nodes that are not needed).
Below is the implementation of the above approach.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Structure of a binary tree node struct Node { int data; struct Node *left, *right; }; // Function to create a new tree node Node* newNode( int data) { Node* temp = new Node; temp->data = data; temp->left = temp->right = nullptr; return temp; } int maxLevel = 0; // Function to find the leftview void leftView(Node* root, int level, vector< int >& ans) { if (!root) return ; if (maxLevel < level) { ans.push_back(root->data); maxLevel = level; } leftView(root->left, level + 1, ans); } // Function to find the rightview void rightView(Node* root, int level, vector< int >& ans) { if (!root) return ; if (maxLevel < level) { ans.push_back(root->data); maxLevel = level; } rightView(root->right, level + 1, ans); } // Function to print the traversal vector< int > coneLevel(Node* root) { maxLevel = 0; // Vector in which we will store // the boundary of the binary tree vector< int > ans; // Calling the leftView If you have notices // that we are passing the root->left because // we are considering the root value // in the rightView call leftView(root->left, 1, ans); // We need to reverse the solution because // of the reason stated in step 2 reverse(ans.begin(), ans.end()); // Again setting the value of maxLevel as zero maxLevel = 0; // Calling the rightView in this call we are // considering the root value rightView(root, 1, ans); return ans; } // Driver code int main() { Node* root = newNode(12); root->left = newNode(15); root->right = newNode(65); root->left->left = newNode(9); root->left->right = newNode(10); root->right->left = newNode(46); root->right->right = newNode(57); // Function call vector< int > ans = coneLevel(root); // Printing the solution for ( auto it : ans) cout << it << " " ; return 0; } |
Java
// Java code to implement the approach import java.io.*; import java.util.*; class GFG { // Structure of a binary tree node public static class Node { int data; Node left; Node right; Node() {} Node( int data) { this .data = data; } Node( int data, Node left, Node right) { this .data = data; this .left = left; this .right = right; } } static int maxLevel = 0 ; // Function to find the leftview public static void leftView(Node root, int level, ArrayList<Integer> ans) { if (root == null ) return ; if (maxLevel < level) { ans.add(root.data); maxLevel = level; } leftView(root.left, level + 1 , ans); } // Function to find the rightview public static void rightView(Node root, int level, ArrayList<Integer> ans) { if (root == null ) return ; if (maxLevel < level) { ans.add(root.data); maxLevel = level; } rightView(root.right, level + 1 , ans); } // Function to print the traversal public static ArrayList<Integer> coneLevel(Node root) { maxLevel = 0 ; // ArrayList in which we will store // the boundary of the binary tree ArrayList<Integer> ans = new ArrayList<>(); // Calling the leftView If you have noticed // that we are passing the root->left because // we are considering the root value // in the rightView call leftView(root.left, 1 , ans); // We need to reverse the solution because // of the reason stated in step 2 Collections.reverse(ans); // Again setting the value of maxLevel as zero maxLevel = 0 ; // Calling the rightView in this call we are // considering the root value rightView(root, 1 , ans); return ans; } // Driver Code public static void main(String[] args) { Node root = new Node( 12 ); root.left = new Node( 15 ); root.right = new Node( 65 ); root.left.left = new Node( 9 ); root.left.right = new Node( 10 ); root.right.left = new Node( 46 ); root.right.right = new Node( 57 ); // Function call ArrayList<Integer> ans = coneLevel(root); // Printing the solution for (Integer it : ans) System.out.print(it + " " ); } } // This code is contributed by Rohit Pradhan |
Python3
# Python3 code to implement the approach # Structure of a binary tree node class Node: def __init__( self ,data = 0 ,left = None ,right = None ): self .data = data self .left = left self .right = right maxLevel = 0 # Function to find the leftview def leftView(root,level,ans): global maxLevel if (root = = None ): return if (maxLevel < level): ans.append(root.data) maxLevel = level leftView(root.left, level + 1 , ans) # Function to find the rightview def rightView(root,level,ans): global maxLevel if (root = = None ): return if (maxLevel < level): ans.append(root.data) maxLevel = level rightView(root.right, level + 1 , ans) # Function to print the traversal def coneLevel(root): global maxLevel maxLevel = 0 # ArrayList in which we will store # the boundary of the binary tree ans = [] # Calling the leftView If you have noticed # that we are passing the root->left because # we are considering the root value # in the rightView call leftView(root.left, 1 , ans) # We need to reverse the solution because # of the reason stated in step 2 ans = ans[:: - 1 ] # Again setting the value of maxLevel as zero maxLevel = 0 # Calling the rightView in this call we are # considering the root value rightView(root, 1 , ans) return ans # Driver Code root = Node( 12 ) root.left = Node( 15 ) root.right = Node( 65 ) root.left.left = Node( 9 ) root.left.right = Node( 10 ) root.right.left = Node( 46 ) root.right.right = Node( 57 ) # Function call ans = coneLevel(root) # Printing the solution for it in ans: print (it ,end = " " ) # This code is contributed by shinjanpatra |
C#
// C# code to implement the approach using System; using System.Collections; public class GFG{ // Structure of a binary tree node public class Node { public int data; public Node left; public Node right; public Node() {} public Node( int data) { this .data = data; } public Node( int data, Node left, Node right) { this .data = data; this .left = left; this .right = right; } } static int maxLevel = 0; // Function to find the leftview public static void leftView(Node root, int level, ArrayList ans) { if (root == null ) return ; if (maxLevel < level) { ans.Add(root.data); maxLevel = level; } leftView(root.left, level + 1, ans); } // Function to find the rightview public static void rightView(Node root, int level, ArrayList ans) { if (root == null ) return ; if (maxLevel < level) { ans.Add(root.data); maxLevel = level; } rightView(root.right, level + 1, ans); } // Function to print the traversal public static ArrayList coneLevel(Node root) { maxLevel = 0; // ArrayList in which we will store // the boundary of the binary tree ArrayList ans = new ArrayList(); // Calling the leftView If you have noticed // that we are passing the root->left because // we are considering the root value // in the rightView call leftView(root.left, 1, ans); // We need to reverse the solution because // of the reason stated in step 2 ans.Reverse(); // Again setting the value of maxLevel as zero maxLevel = 0; // Calling the rightView in this call we are // considering the root value rightView(root, 1, ans); return ans; } static public void Main (){ // Code Node root = new Node(12); root.left = new Node(15); root.right = new Node(65); root.left.left = new Node(9); root.left.right = new Node(10); root.right.left = new Node(46); root.right.right = new Node(57); // Function call ArrayList ans = coneLevel(root); // Printing the solution foreach ( int it in ans){ Console.Write(it + " " ); } } } // This code is contributed by lokeshmvs21. |
Javascript
<script> // JavaScript code to implement the approach // Structure of a binary tree node class Node{ constructor(data = 0,left = null ,right = null ){ this .data = data this .left = left this .right = right } } let maxLevel = 0 // Function to find the leftview function leftView(root,level,ans){ if (root == null ) return if (maxLevel < level){ ans.push(root.data) maxLevel = level } leftView(root.left, level + 1, ans) } // Function to find the rightview function rightView(root,level,ans){ if (root == null ) return if (maxLevel < level){ ans.push(root.data) maxLevel = level } rightView(root.right, level + 1, ans) } // Function to print the traversal function coneLevel(root){ maxLevel = 0 // ArrayList in which we will store // the boundary of the binary tree let ans = [] // Calling the leftView If you have noticed // that we are passing the root->left because // we are considering the root value // in the rightView call leftView(root.left, 1, ans) // We need to reverse the solution because // of the reason stated in step 2 ans = ans.reverse(); // Again setting the value of maxLevel as zero maxLevel = 0 // Calling the rightView in this call we are // considering the root value rightView(root, 1, ans) return ans } // Driver Code let root = new Node(12) root.left = new Node(15) root.right = new Node(65) root.left.left = new Node(9) root.left.right = new Node(10) root.right.left = new Node(46) root.right.right = new Node(57) // Function call let ans = coneLevel(root) // Printing the solution for (let it of ans) document.write(it , " " ) // This code is contributed by shinjanpatra </script> |
9 15 12 65 57
Time Complexity: O(V + E), where V is the vertices and E is the edges
Auxiliary Space: O(V)
Please Login to comment...