Print nodes of a Binary Search Tree in Top Level Order and Reversed Bottom Level Order alternately
Given a Binary Search Tree, the task is to print the nodes of the BST in the following order:
- If the BST contains levels numbered from 1 to N then, the printing order is level 1, level N, level 2, level N – 1, and so on.
- The top-level order (1, 2, …) nodes are printed from left to right, while the bottom level order (N, N-1, …) nodes are printed from right to left.
Examples:
Input:
Output: 27 42 31 19 10 14 35
Explanation:
Level 1 from left to right: 27
Level 3 from right to left: 42 31 19 10
Level 2 from left to right: 14 35
Approach: To solve the problem, the idea is to store the nodes of BST in ascending and descending order of levels and node values and print all the nodes of the same level alternatively between ascending and descending order. Follow the steps below to solve the problem:
- Initialize a Min Heap and a Max Heap to store the nodes in ascending and descending order of level and node values respectively.
- Perform a level order traversal on the given BST to store the nodes in the respective priority queues.
- Print all the nodes of each level one by one from the Min Heap followed by the Max Heap alternately.
- If any level in the Min Heap or Max Heap is found to be already printed, skip to the next level.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Structure of a BST node struct node { int data; struct node* left; struct node* right; }; // Utility function to create a new BST node struct node* newnode( int d) { struct node* temp = ( struct node*) malloc ( sizeof ( struct node)); temp->left = NULL; temp->right = NULL; temp->data = d; return temp; } // Function to print the nodes of a // BST in Top Level Order and Reversed // Bottom Level Order alternatively void printBST(node* root) { // Stores the nodes in descending order // of the level and node values priority_queue<pair< int , int > > great; // Stores the nodes in ascending order // of the level and node values priority_queue<pair< int , int >, vector<pair< int , int > >, greater<pair< int , int > > > small; // Initialize a stack for // level order traversal stack<pair<node*, int > > st; // Push the root of BST // into the stack st.push({ root, 1 }); // Perform Level Order Traversal while (!st.empty()) { // Extract and pop the node // from the current level node* curr = st.top().first; // Stores level of current node int level = st.top().second; st.pop(); // Store in the priority queues great.push({ level, curr->data }); small.push({ level, curr->data }); // Traverse left subtree if (curr->left) st.push({ curr->left, level + 1 }); // Traverse right subtree if (curr->right) st.push({ curr->right, level + 1 }); } // Stores the levels that are printed unordered_set< int > levelsprinted; // Print the nodes in the required manner while (!small.empty() && !great.empty()) { // Store the top level of traversal int toplevel = small.top().first; // If the level is already printed if (levelsprinted.find(toplevel) != levelsprinted.end()) break ; // Otherwise else levelsprinted.insert(toplevel); // Print nodes of same level while (!small.empty() && small.top().first == toplevel) { cout << small.top().second << " " ; small.pop(); } // Store the bottom level of traversal int bottomlevel = great.top().first; // If the level is already printed if (levelsprinted.find(bottomlevel) != levelsprinted.end()) { break ; } else { levelsprinted.insert(bottomlevel); } // Print the nodes of same level while (!great.empty() && great.top().first == bottomlevel) { cout << great.top().second << " " ; great.pop(); } } } // Driver Code int main() { /* Given BST 25 / \ 20 36 / \ / \ 10 22 30 40 / \ / / \ 5 12 28 38 48 */ // Creating the BST node* root = newnode(25); root->left = newnode(20); root->right = newnode(36); root->left->left = newnode(10); root->left->right = newnode(22); root->left->left->left = newnode(5); root->left->left->right = newnode(12); root->right->left = newnode(30); root->right->right = newnode(40); root->right->left->left = newnode(28); root->right->right->left = newnode(38); root->right->right->right = newnode(48); // Function Call printBST(root); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { // Structure of a BST node static class node { int data; node left; node right; } //Structure of pair (used in PriorityQueue) static class pair{ int x,y; pair( int xx, int yy){ this .x=xx; this .y=yy; } } //Structure of pair (used in Stack) static class StackPair{ node n; int x; StackPair(node nn, int xx){ this .n=nn; this .x=xx; } } // Utility function to create a new BST node static node newnode( int d) { node temp = new node(); temp.left = null ; temp.right = null ; temp.data = d; return temp; } //Custom Comparator for pair class to sort //elements in increasing order static class IncreasingOrder implements Comparator<pair>{ public int compare(pair p1, pair p2){ if (p1.x>p2.x){ return 1 ; } else { if (p1.x<p2.x){ return - 1 ; } else { if (p1.y>p2.y){ return 1 ; } else { if (p1.y<p2.y){ return - 1 ; } else { return 0 ; } } } } } } // Custom Comparator for pair class to sort // elements in decreasing order static class DecreasingOrder implements Comparator<pair>{ public int compare(pair p1, pair p2){ if (p1.x>p2.x){ return - 1 ; } else { if (p1.x<p2.x){ return 1 ; } else { if (p1.y>p2.y){ return - 1 ; } else { if (p1.y<p2.y){ return 1 ; } else { return 0 ; } } } } } } // Function to print the nodes of a // BST in Top Level Order and Reversed // Bottom Level Order alternatively static void printBST(node root) { // Stores the nodes in descending order // of the level and node values PriorityQueue<pair> great = new PriorityQueue<>( new DecreasingOrder()); // Stores the nodes in ascending order // of the level and node values PriorityQueue<pair> small = new PriorityQueue<>( new IncreasingOrder()); // Initialize a stack for // level order traversal Stack<StackPair> st = new Stack<>(); // Push the root of BST // into the stack st.push( new StackPair(root, 1 )); // Perform Level Order Traversal while (!st.isEmpty()) { // Extract and pop the node // from the current level StackPair sp = st.pop(); node curr = sp.n; // Stores level of current node int level = sp.x; // Store in the priority queues great.add( new pair(level,curr.data)); small.add( new pair(level,curr.data)); // Traverse left subtree if (curr.left!= null ) st.push( new StackPair(curr.left,level+ 1 )); // Traverse right subtree if (curr.right!= null ) st.push( new StackPair(curr.right,level+ 1 )); } // Stores the levels that are printed HashSet<Integer> levelsprinted = new HashSet<>(); // Print the nodes in the required manner while (!small.isEmpty() && !great.isEmpty()) { // Store the top level of traversal int toplevel = small.peek().x; // If the level is already printed if (levelsprinted.contains(toplevel)) break ; // Otherwise else levelsprinted.add(toplevel); // Print nodes of same level while (!small.isEmpty() && small.peek().x == toplevel) { System.out.print(small.poll().y + " " ); } // Store the bottom level of traversal int bottomlevel = great.peek().x; // If the level is already printed if (levelsprinted.contains(bottomlevel)) { break ; } else { levelsprinted.add(bottomlevel); } // Print the nodes of same level while (!great.isEmpty() && great.peek().x == bottomlevel) { System.out.print(great.poll().y + " " ); } } } public static void main (String[] args) { /* Given BST 25 / \ 20 36 / \ / \ 10 22 30 40 / \ / / \ 5 12 28 38 48 */ // Creating the BST node root = newnode( 25 ); root.left = newnode( 20 ); root.right = newnode( 36 ); root.left.left = newnode( 10 ); root.left.right = newnode( 22 ); root.left.left.left = newnode( 5 ); root.left.left.right = newnode( 12 ); root.right.left = newnode( 30 ); root.right.right = newnode( 40 ); root.right.left.left = newnode( 28 ); root.right.right.left = newnode( 38 ); root.right.right.right = newnode( 48 ); // Function Call printBST(root); } } // This code is contributed by shruti456rawal |
Output:
25 48 38 28 12 5 20 36 40 30 22 10
Time Complexity: O(V log(V)), where V denotes the number of vertices in the given Binary Tree
Auxiliary Space: O(V)
Please Login to comment...