Print first N Mosaic numbers
Given an integer N, the task is to print first N Mosaic numbers. A Mosaic number can be expressed as follows:
If N = p1a1p2a2…pkak in the prime factorization of N
where p1 ,p2 … pk are prime numbers.
Then the Nth Mosaic number is equal to ((p1)*(a1))*((p2)*(a2))*…*((pk)*(ak))
Examples:
Input : N=10
Output : 1 2 3 4 5 6 7 6 6 10
For N = 4, N = 22 .
4th Mosaic number = 2*2 = 4
For N=8 , N= 2 3
8th Mosaic number = 2*3 = 6
Similarly print first N Mosaic numbersInput : N=5
Output : 1 2 3 4 5
Approach:
Run a loop from 1 to N and for every i we have to find all the prime factors and also the powers of the factors in the number by dividing the number by the factor until the factor divides the number. The ith Mosaic number will then be the product of the found prime factors and their powers.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the nth mosaic number int mosaic( int n) { int i, ans = 1; // Iterate from 2 to the number for (i = 2; i <= n; i++) { // If i is the factor of n if (n % i == 0 && n > 0) { int count = 0; // Find the count where i^count // is a factor of n while (n % i == 0) { // Divide the number by i n /= i; // Increase the count count++; } // Multiply the answer with // count and i ans *= count * i; } } // Return the answer return ans; } // Function to print first N Mosaic numbers void nMosaicNumbers( int n) { for ( int i = 1; i <= n; i++) cout << mosaic(i) << " " ; } // Driver code int main() { int n = 10; nMosaicNumbers(n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the nth mosaic number static int mosaic( int n) { int i, ans = 1 ; // Iterate from 2 to the number for (i = 2 ; i <= n; i++) { // If i is the factor of n if (n % i == 0 && n > 0 ) { int count = 0 ; // Find the count where i^count // is a factor of n while (n % i == 0 ) { // Divide the number by i n /= i; // Increase the count count++; } // Multiply the answer with // count and i ans *= count * i; } } // Return the answer return ans; } // Function to print first N Mosaic numbers static void nMosaicNumbers( int n) { for ( int i = 1 ; i <= n; i++) System.out.print( mosaic(i)+ " " ); } // Driver code public static void main(String[] args) { int n = 10 ; nMosaicNumbers(n); } } // This code contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the nth mosaic number static int mosaic( int n) { int i, ans = 1; // Iterate from 2 to the number for (i = 2; i <= n; i++) { // If i is the factor of n if (n % i == 0 && n > 0) { int count = 0; // Find the count where i^count // is a factor of n while (n % i == 0) { // Divide the number by i n /= i; // Increase the count count++; } // Multiply the answer with // count and i ans *= count * i; } } // Return the answer return ans; } // Function to print first N Mosaic numbers static void nMosaicNumbers( int n) { for ( int i = 1; i <= n; i++) Console.Write( mosaic(i)+ " " ); } // Driver code public static void Main() { int n = 10; nMosaicNumbers(n); } } // This code is contributed by AnkitRai01 |
Python
# Python implementation of the approach # Function to return the nth mosaic number def mosaic( n): ans = 1 # Iterate from 2 to the number for i in range ( 2 ,n + 1 ): # If i is the factor of n if (n % i = = 0 and n > 0 ): count = 0 ; # Find the count where i^count # is a factor of n while (n % i = = 0 ): # Divide the number by i n = n / / i # Increase the count count + = 1 ; # Multiply the answer with # count and i ans * = count * i; # Return the answer return ans; # Function to print first N Mosaic numbers def nMosaicNumbers(n): for i in range ( 1 ,n + 1 ): print mosaic(i), # Driver code n = 10 ; nMosaicNumbers(n); # This code is contributed by CrazyPro |
Javascript
<script> // Javascript implementation of the approach // Function to return the nth mosaic number function mosaic(n) { var i, ans = 1; // Iterate from 2 to the number for (i = 2; i <= n; i++) { // If i is the factor of n if (n % i == 0 && n > 0) { var count = 0; // Find the count where i^count // is a factor of n while (n % i == 0) { // Divide the number by i n /= i; // Increase the count count++; } // Multiply the answer with // count and i ans *= count * i; } } // Return the answer return ans; } // Function to print first N Mosaic numbers function nMosaicNumbers(n) { for ( var i = 1; i <= n; i++) document.write( mosaic(i) + " " ); } // Driver code var n = 10; nMosaicNumbers(n); </script> |
1 2 3 4 5 6 7 6 6 10
Time Complexity: O(logn)
Auxiliary Space: O(1)
Please Login to comment...