Print cousins of a given node in Binary Tree | Single Traversal
Given a binary tree and a node, print all cousins of given node. Note that siblings should not be printed.
Examples:
Input : root of below tree 1 / \ 2 3 / \ / \ 4 5 6 7 and pointer to a node say 5. Output : 6, 7
Note that it is the same problem as given at Print cousins of a given node in Binary Tree which consists of two traversals recursively. In this post, a single level traversal approach is discussed.
The idea is to go for level order traversal of the tree, as the cousins and siblings of a node can be found in its level order traversal. Run the traversal till the level containing the node is not found, and if found, print the given level.
How to print the cousin nodes instead of siblings and how to get the nodes of that level in the queue?
During the level order, when for the parent node, if parent->left == Node_to_find, or parent->right == Node_to_find, then the children of this parent must not be pushed into the queue (as one is the node and other will be its sibling). Push the remaining nodes at the same level in the queue and then exit the loop. The current queue will have the nodes at the next level (the level of the node being searched, except the node and its sibling). Now, print the queue.
Following is the implementation of the above algorithm.
C++
// C++ program to print cousins of a node #include <iostream> #include <queue> using namespace std; // A Binary Tree Node struct Node { int data; Node *left, *right; }; // A utility function to create a new Binary // Tree Node Node* newNode( int item) { Node* temp = new Node; temp->data = item; temp->left = temp->right = NULL; return temp; } // function to print cousins of the node void printCousins(Node* root, Node* node_to_find) { // if the given node is the root itself, // then no nodes would be printed if (root == node_to_find) { cout << "Cousin Nodes : None" << endl; return ; } queue<Node*> q; bool found = false ; int size_; Node* p; q.push(root); // the following loop runs until found is // not true, or q is not empty. // if found has become true => we have found // the level in which the node is present // and the present queue will contain all the // cousins of that node while (!q.empty() && !found) { size_ = q.size(); while (size_) { p = q.front(); q.pop(); // if current node's left or right child // is the same as the node to find, // then make found = true, and don't push // any of them into the queue, as // we don't have to print the siblings if ((p->left == node_to_find || p->right == node_to_find)) { found = true ; } else { if (p->left) q.push(p->left); if (p->right) q.push(p->right); } size_--; } } // if found == true then the queue will contain the // cousins of the given node if (found) { cout << "Cousin Nodes : " ; size_ = q.size(); // size_ will be 0 when the node was at the // level just below the root node. if (size_ == 0) cout << "None" ; for ( int i = 0; i < size_; i++) { p = q.front(); q.pop(); cout << p->data << " " ; } } else { cout << "Node not found" ; } cout << endl; return ; } // Driver Program to test above function int main() { Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->left->right->right = newNode(15); root->right->left = newNode(6); root->right->right = newNode(7); root->right->left->right = newNode(8); Node* x = newNode(43); printCousins(root, x); printCousins(root, root); printCousins(root, root->right); printCousins(root, root->left); printCousins(root, root->left->right); return 0; } |
Java
// Java program to print // cousins of a node import java.io.*; import java.util.*; import java.lang.*; // A Binary Tree Node class Node { int data; Node left, right; Node( int key) { data = key; left = right = null ; } } class GFG { // function to print // cousins of the node static void printCousins(Node root, Node node_to_find) { // if the given node // is the root itself, // then no nodes would // be printed if (root == node_to_find) { System.out.print( "Cousin Nodes :" + " None" + "\n" ); return ; } Queue<Node> q = new LinkedList<Node>(); boolean found = false ; int size_ = 0 ; Node p = null ; q.add(root); // the following loop runs // until found is not true, // or q is not empty. if // found has become true => we // have found the level in // which the node is present // and the present queue will // contain all the cousins of // that node while (q.isEmpty() == false && found == false ) { size_ = q.size(); while (size_ -- > 0 ) { p = q.peek(); q.remove(); // if current node's left // or right child is the // same as the node to find, // then make found = true, // and don't push any of them // into the queue, as we don't // have to print the siblings if ((p.left == node_to_find || p.right == node_to_find)) { found = true ; } else { if (p.left != null ) q.add(p.left); if (p.right!= null ) q.add(p.right); } } } // if found == true then the // queue will contain the // cousins of the given node if (found == true ) { System.out.print( "Cousin Nodes : " ); size_ = q.size(); // size_ will be 0 when // the node was at the // level just below the // root node. if (size_ == 0 ) System.out.print( "None" ); for ( int i = 0 ; i < size_; i++) { p = q.peek(); q.poll(); System.out.print(p.data + " " ); } } else { System.out.print( "Node not found" ); } System.out.println( "" ); return ; } // Driver code public static void main(String[] args) { Node root = new Node( 1 ); root.left = new Node( 2 ); root.right = new Node( 3 ); root.left.left = new Node( 4 ); root.left.right = new Node( 5 ); root.left.right.right = new Node( 15 ); root.right.left = new Node( 6 ); root.right.right = new Node( 7 ); root.right.left.right = new Node( 8 ); Node x = new Node( 43 ); printCousins(root, x); printCousins(root, root); printCousins(root, root.right); printCousins(root, root.left); printCousins(root, root.left.right); } } |
Python3
# Python3 program to print cousins of a node # A Binary Tree Node class Node: def __init__( self , data): self .data = data self .left = None self .right = None # A utility function to create a new Binary # Tree Node def newNode(item): temp = Node(item) return temp # function to print cousins of the node def printCousins(root, node_to_find): # if the given node is the root itself, # then no nodes would be printed if (root = = node_to_find): print ( "Cousin Nodes : None" ) return ; q = [] found = False ; size_ = 0 p = None q.append(root); # the following loop runs until found is # not true, or q is not empty. # if found has become true => we have found # the level in which the node is present # and the present queue will contain all the # cousins of that node while ( len (q) ! = 0 and not found): size_ = len (q) while (size_ ! = 0 ): p = q[ 0 ] q.pop( 0 ); # if current node's left or right child # is the same as the node to find, # then make found = true, and don't append # any of them into the queue, as # we don't have to print the siblings if ((p.left = = node_to_find or p.right = = node_to_find)): found = True ; else : if (p.left): q.append(p.left); if (p.right): q.append(p.right); size_ - = 1 # if found == true then the queue will contain the # cousins of the given node if (found): print ( "Cousin Nodes : " , end = '') size_ = len (q) # size_ will be 0 when the node was at the # level just below the root node. if (size_ = = 0 ): print ( "None" , end = '') for i in range ( 0 , size_): p = q[ 0 ] q.pop( 0 ); print (p.data, end = ' ' ) else : print ( "Node not found" , end = '') print () return ; # Driver Program to test above function if __name__ = = '__main__' : root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.left.right.right = newNode( 15 ); root.right.left = newNode( 6 ); root.right.right = newNode( 7 ); root.right.left.right = newNode( 8 ); x = newNode( 43 ); printCousins(root, x); printCousins(root, root); printCousins(root, root.right); printCousins(root, root.left); printCousins(root, root.left.right); # This code is contributed by rutvik_56 |
C#
// C# program to print // cousins of a node using System; using System.Collections.Generic; // A Binary Tree Node public class Node { public int data; public Node left, right; public Node( int key) { data = key; left = right = null ; } } public class GFG { // function to print // cousins of the node static void printCousins(Node root, Node node_to_find) { // if the given node // is the root itself, // then no nodes would // be printed if (root == node_to_find) { Console.Write( "Cousin Nodes :" + " None" + "\n" ); return ; } Queue<Node> q = new Queue<Node>(); bool found = false ; int size_ = 0; Node p = null ; q.Enqueue(root); // the following loop runs // until found is not true, // or q is not empty. if // found has become true => we // have found the level in // which the node is present // and the present queue will // contain all the cousins of // that node while (q.Count!=0 && found == false ) { size_ = q.Count; while (size_ -- > 0) { p = q.Peek(); q.Dequeue(); // if current node's left // or right child is the // same as the node to find, // then make found = true, // and don't push any of them // into the queue, as we don't // have to print the siblings if ((p.left == node_to_find || p.right == node_to_find)) { found = true ; } else { if (p.left != null ) q.Enqueue(p.left); if (p.right!= null ) q.Enqueue(p.right); } } } // if found == true then the // queue will contain the // cousins of the given node if (found == true ) { Console.Write( "Cousin Nodes : " ); size_ = q.Count; // size_ will be 0 when // the node was at the // level just below the // root node. if (size_ == 0) Console.Write( "None" ); for ( int i = 0; i < size_; i++) { p = q.Peek(); q.Dequeue(); Console.Write(p.data + " " ); } } else { Console.Write( "Node not found" ); } Console.WriteLine( "" ); return ; } // Driver code public static void Main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.left.right.right = new Node(15); root.right.left = new Node(6); root.right.right = new Node(7); root.right.left.right = new Node(8); Node x = new Node(43); printCousins(root, x); printCousins(root, root); printCousins(root, root.right); printCousins(root, root.left); printCousins(root, root.left.right); } } // This code is contributed Rajput-Ji |
Javascript
<script> // Javascript program to print // cousins of a node // A Binary Tree Node class Node { constructor(key) { this .data = key; this .left = null ; this .right = null ; } } // Function to print // cousins of the node function printCousins(root, node_to_find) { // If the given node // is the root itself, // then no nodes would // be printed if (root == node_to_find) { document.write( "Cousin Nodes :" + " None" + "<br>" ); return ; } var q = []; var found = false ; var size_ = 0; var p = null ; q.push(root); // The following loop runs // until found is not true, // or q is not empty. if // found has become true => we // have found the level in // which the node is present // and the present queue will // contain all the cousins of // that node while (q.length != 0 && found == false ) { size_ = q.length; while (size_ -- > 0) { p = q[0]; q.shift(); // If current node's left // or right child is the // same as the node to find, // then make found = true, // and don't push any of them // into the queue, as we don't // have to print the siblings if ((p.left == node_to_find || p.right == node_to_find)) { found = true ; } else { if (p.left != null ) q.push(p.left); if (p.right!= null ) q.push(p.right); } } } // If found == true then the // queue will contain the // cousins of the given node if (found == true ) { document.write( "Cousin Nodes : " ); size_ = q.length; // size_ will be 0 when // the node was at the // level just below the // root node. if (size_ == 0) document.write( "None" ); for ( var i = 0; i < size_; i++) { p = q[0]; q.shift(); document.write(p.data + " " ); } } else { document.write( "Node not found" ); } document.write( "<br>" ); return ; } // Driver code var root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.left.right.right = new Node(15); root.right.left = new Node(6); root.right.right = new Node(7); root.right.left.right = new Node(8); var x = new Node(43); printCousins(root, x); printCousins(root, root); printCousins(root, root.right); printCousins(root, root.left); printCousins(root, root.left.right); // This code is contributed by famously </script> |
Node not found Cousin Nodes : None Cousin Nodes : None Cousin Nodes : None Cousin Nodes : 6 7
Time Complexity : This is a single level order traversal, hence time complexity = O(n), and Auxiliary space = O(n) (See this).
Please Login to comment...