Print common nodes on path from root (or common ancestors)
Given a binary tree and two nodes, the task is to Print all the nodes that are common for 2 given nodes in a binary tree.
Examples:
Given binary tree is : 1 / \ 2 3 / \ / \ 4 5 6 7 / / \ 8 9 10 Given nodes 9 and 7, so the common nodes are:- 1, 3
Asked in : Amazon
- Find the LCA of given two nodes.
- Print all ancestors of the LCA as done in this post, also print the LCA.
Implementation:
C++
// C++ Program to find common nodes for given two nodes #include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct Node { struct Node* left, *right; int key; }; // Utility function to create a new tree Node Node* newNode( int key) { Node* temp = new Node; temp->key = key; temp->left = temp->right = NULL; return temp; } // Utility function to find the LCA of two given values // n1 and n2. struct Node* findLCA( struct Node* root, int n1, int n2) { // Base case if (root == NULL) return NULL; // If either n1 or n2 matches with root's key, // report the presence by returning root (Note // that if a key is ancestor of other, then the // ancestor key becomes LCA if (root->key == n1 || root->key == n2) return root; // Look for keys in left and right subtrees Node* left_lca = findLCA(root->left, n1, n2); Node* right_lca = findLCA(root->right, n1, n2); // If both of the above calls return Non-NULL, then // one key is present in once subtree and other is // present in other, So this node is the LCA if (left_lca && right_lca) return root; // Otherwise check if left subtree or right // subtree is LCA return (left_lca != NULL) ? left_lca : right_lca; } // Utility Function to print all ancestors of LCA bool printAncestors( struct Node* root, int target) { /* base cases */ if (root == NULL) return false ; if (root->key == target) { cout << root->key << " " ; return true ; } /* If target is present in either left or right subtree of this node, then print this node */ if (printAncestors(root->left, target) || printAncestors(root->right, target)) { cout << root->key << " " ; return true ; } /* Else return false */ return false ; } // Function to find nodes common to given two nodes bool findCommonNodes( struct Node* root, int first, int second) { struct Node* LCA = findLCA(root, first, second); if (LCA == NULL) return false ; printAncestors(root, LCA->key); } // Driver program to test above functions int main() { // Let us create binary tree given in the above // example Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->left->left = newNode(8); root->right->left->left = newNode(9); root->right->left->right = newNode(10); if (findCommonNodes(root, 9, 7) == false ) cout << "No Common nodes" ; return 0; } |
Java
// Java Program to find common nodes for given two nodes import java.util.LinkedList; // Class to represent Tree node class Node { int data; Node left, right; public Node( int item) { data = item; left = null ; right = null ; } } // Class to count full nodes of Tree class BinaryTree { static Node root; // Utility function to find the LCA of two given values // n1 and n2. static Node findLCA(Node root, int n1, int n2) { // Base case if (root == null ) return null ; // If either n1 or n2 matches with root's key, // report the presence by returning root (Note // that if a key is ancestor of other, then the // ancestor key becomes LCA if (root.data == n1 || root.data == n2) return root; // Look for keys in left and right subtrees Node left_lca = findLCA(root.left, n1, n2); Node right_lca = findLCA(root.right, n1, n2); // If both of the above calls return Non-NULL, then // one key is present in once subtree and other is // present in other, So this node is the LCA if (left_lca!= null && right_lca!= null ) return root; // Otherwise check if left subtree or right // subtree is LCA return (left_lca != null ) ? left_lca : right_lca; } // Utility Function to print all ancestors of LCA static boolean printAncestors(Node root, int target) { /* base cases */ if (root == null ) return false ; if (root.data == target) { System.out.print(root.data+ " " ); return true ; } /* If target is present in either left or right subtree of this node, then print this node */ if (printAncestors(root.left, target) || printAncestors(root.right, target)) { System.out.print(root.data+ " " ); return true ; } /* Else return false */ return false ; } // Function to find nodes common to given two nodes static boolean findCommonNodes(Node root, int first, int second) { Node LCA = findLCA(root, first, second); if (LCA == null ) return false ; printAncestors(root, LCA.data); return true ; } // Driver program to test above functions public static void main(String args[]) { /*Let us create Binary Tree shown in above example */ BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); tree.root.left.left.left = new Node( 8 ); tree.root.right.left.left = new Node( 9 ); tree.root.right.left.right = new Node( 10 ); if (findCommonNodes(root, 9 , 7 ) == false ) System.out.println( "No Common nodes" ); } } // This code is contributed by Mr Somesh Awasthi |
Python3
# Python3 Program to find common # nodes for given two nodes # Utility class to create a new tree Node class newNode: def __init__( self , key): self .key = key self .left = self .right = None # Utility function to find the LCA of # two given values n1 and n2. def findLCA(root, n1, n2): # Base case if (root = = None ): return None # If either n1 or n2 matches with root's key, # report the presence by returning root (Note # that if a key is ancestor of other, then the # ancestor key becomes LCA if (root.key = = n1 or root.key = = n2): return root # Look for keys in left and right subtrees left_lca = findLCA(root.left, n1, n2) right_lca = findLCA(root.right, n1, n2) # If both of the above calls return Non-None, # then one key is present in once subtree and # other is present in other, So this node is the LCA if (left_lca and right_lca): return root # Otherwise check if left subtree or # right subtree is LCA if (left_lca ! = None ): return left_lca else : return right_lca # Utility Function to print all ancestors of LCA def printAncestors(root, target): # base cases if (root = = None ): return False if (root.key = = target): print (root.key, end = " " ) return True # If target is present in either left or right # subtree of this node, then print this node if (printAncestors(root.left, target) or printAncestors(root.right, target)): print (root.key, end = " " ) return True # Else return False return False # Function to find nodes common to given two nodes def findCommonNodes(root, first, second): LCA = findLCA(root, first, second) if (LCA = = None ): return False printAncestors(root, LCA.key) # Driver Code if __name__ = = '__main__' : # Let us create binary tree given # in the above example root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) root.right.left = newNode( 6 ) root.right.right = newNode( 7 ) root.left.left.left = newNode( 8 ) root.right.left.left = newNode( 9 ) root.right.left.right = newNode( 10 ) if (findCommonNodes(root, 9 , 7 ) = = False ): print ( "No Common nodes" ) # This code is contributed by PranchalK |
C#
using System; // C# Program to find common nodes for given two nodes // Class to represent Tree node public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = null ; right = null ; } } // Class to count full nodes of Tree public class BinaryTree { public static Node root; // Utility function to find the LCA of two given values // n1 and n2. public static Node findLCA(Node root, int n1, int n2) { // Base case if (root == null ) { return null ; } // If either n1 or n2 matches with root's key, // report the presence by returning root (Note // that if a key is ancestor of other, then the // ancestor key becomes LCA if (root.data == n1 || root.data == n2) { return root; } // Look for keys in left and right subtrees Node left_lca = findLCA(root.left, n1, n2); Node right_lca = findLCA(root.right, n1, n2); // If both of the above calls return Non-NULL, then // one key is present in once subtree and other is // present in other, So this node is the LCA if (left_lca != null && right_lca != null ) { return root; } // Otherwise check if left subtree or right // subtree is LCA return (left_lca != null ) ? left_lca : right_lca; } // Utility Function to print all ancestors of LCA public static bool printAncestors(Node root, int target) { /* base cases */ if (root == null ) { return false ; } if (root.data == target) { Console.Write(root.data + " " ); return true ; } /* If target is present in either left or right subtree of this node, then print this node */ if (printAncestors(root.left, target) || printAncestors(root.right, target)) { Console.Write(root.data + " " ); return true ; } /* Else return false */ return false ; } // Function to find nodes common to given two nodes public static bool findCommonNodes(Node root, int first, int second) { Node LCA = findLCA(root, first, second); if (LCA == null ) { return false ; } printAncestors(root, LCA.data); return true ; } // Driver program to test above functions public static void Main( string [] args) { /*Let us create Binary Tree shown in above example */ BinaryTree tree = new BinaryTree(); BinaryTree.root = new Node(1); BinaryTree.root.left = new Node(2); BinaryTree.root.right = new Node(3); BinaryTree.root.left.left = new Node(4); BinaryTree.root.left.right = new Node(5); BinaryTree.root.right.left = new Node(6); BinaryTree.root.right.right = new Node(7); BinaryTree.root.left.left.left = new Node(8); BinaryTree.root.right.left.left = new Node(9); BinaryTree.root.right.left.right = new Node(10); if (findCommonNodes(root, 9, 7) == false ) { Console.WriteLine( "No Common nodes" ); } } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript program to find common // nodes for given two nodes class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } let root; // Utility function to find the LCA of // two given values n1 and n2. function findLCA(root, n1, n2) { // Base case if (root == null ) return null ; // If either n1 or n2 matches with root's key, // report the presence by returning root (Note // that if a key is ancestor of other, then the // ancestor key becomes LCA if (root.data == n1 || root.data == n2) return root; // Look for keys in left and right subtrees let left_lca = findLCA(root.left, n1, n2); let right_lca = findLCA(root.right, n1, n2); // If both of the above calls return Non-NULL, then // one key is present in once subtree and other is // present in other, So this node is the LCA if (left_lca!= null && right_lca!= null ) return root; // Otherwise check if left subtree or right // subtree is LCA return (left_lca != null ) ? left_lca : right_lca; } // Utility Function to print all ancestors of LCA function printAncestors(root, target) { // Base cases if (root == null ) return false ; if (root.data == target) { document.write(root.data + " " ); return true ; } // If target is present in either left or right // subtree of this node, then print this node if (printAncestors(root.left, target) || printAncestors(root.right, target)) { document.write(root.data+ " " ); return true ; } // Else return false return false ; } // Function to find nodes common to given two nodes function findCommonNodes(root, first, second) { let LCA = findLCA(root, first, second); if (LCA == null ) return false ; printAncestors(root, LCA.data); return true ; } // Driver code root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); root.left.left.left = new Node(8); root.right.left.left = new Node(9); root.right.left.right = new Node(10); if (findCommonNodes(root, 9, 7) == false ) document.write( "No Common nodes" ); // This code is contributed by divyeshrabadiya07 </script> |
Output
3 1
Time Complexity: O(N) where N is the number of nodes in given Binary Tree
Auxiliary Space: O(h) where h is the height of binary tree due to recursion stack call.
This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...