Print all combinations of factors (Ways to factorize)
Write a program to print all the combinations of factors of given number n.
Examples:
Input : 16 Output :2 2 2 2 2 2 4 2 8 4 4 Input : 12 Output : 2 2 3 2 6 3 4
To solve this problem we take one array of array of integers or list of list of integers to store all the factors combination possible for the given n. So, to achieve this we can have one recursive function which can store the factors combination in each of its iteration. And each of those list should be stored in the final result list.
Below is the implementation of the above approach.
2 2 2 2 2 2 4 2 8 4 4
Another Approach:
The code below is pure recursive code for printing all combinations of factors:
It uses a vector of integer to store a single list of factors and a vector of integer to store all combinations of factors. Instead of using an iterative loop, it uses the same recursive function to calculate all factor combinations.
C++
// C++ program to print all factors combination #include <bits/stdc++.h> using namespace std; // vector of vector for storing // list of factor combinations vector<vector< int > > factors_combination; // recursive function void compute_factors( int current_no, int n, int product, vector< int > single_list) { // base case: if the product // exceeds our given number; // OR // current_no exceeds half the given n if (current_no > (n / 2) || product > n) return ; // if current list of factors // is contributing to n if (product == n) { // storing the list factors_combination.push_back(single_list); // into factors_combination return ; } // including current_no in our list single_list.push_back(current_no); // trying to get required // n with including current // current_no compute_factors(current_no, n, product * current_no, single_list); // excluding current_no from our list single_list.pop_back(); // trying to get required n // without including current // current_no compute_factors(current_no + 1, n, product, single_list); } // Driver Code int main() { int n = 16; // vector to store single list of factors // eg. 2,2,2,2 is one of the list for n=16 vector< int > single_list; // compute_factors ( starting_no, given_n, // our_current_product, vector ) compute_factors(2, n, 1, single_list); // printing all possible factors stored in // factors_combination for ( int i = 0; i < factors_combination.size(); i++) { for ( int j = 0; j < factors_combination[i].size(); j++) cout << factors_combination[i][j] << " " ; cout << endl; } return 0; } // code contributed by Devendra Kolhe |
Java
// Java program to print all factors combination import java.util.*; class GFG{ // vector of vector for storing // list of factor combinations static Vector<Vector<Integer>> factors_combination = new Vector<Vector<Integer>>(); // Recursive function static void compute_factors( int current_no, int n, int product, Vector<Integer> single_list) { // base case: if the product // exceeds our given number; // OR // current_no exceeds half the given n if (current_no > (n / 2 ) || product > n) return ; // If current list of factors // is contributing to n if (product == n) { // Storing the list factors_combination.add(single_list); // Printing all possible factors stored in // factors_combination for ( int i = 0 ; i < factors_combination.size(); i++) { for ( int j = 0 ; j < factors_combination.get(i).size(); j++) System.out.print(factors_combination.get(i).get(j) + " " ); } System.out.println(); factors_combination = new Vector<Vector<Integer>>(); // Into factors_combination return ; } // Including current_no in our list single_list.add(current_no); // Trying to get required // n with including current // current_no compute_factors(current_no, n, product * current_no, single_list); // Excluding current_no from our list single_list.remove(single_list.size() - 1 ); // Trying to get required n // without including current // current_no compute_factors(current_no + 1 , n, product, single_list); } // Driver code public static void main(String[] args) { int n = 16 ; // Vector to store single list of factors // eg. 2,2,2,2 is one of the list for n=16 Vector<Integer> single_list = new Vector<Integer>(); // compute_factors ( starting_no, given_n, // our_current_product, vector ) compute_factors( 2 , n, 1 , single_list); } } // This code is contributed by decode2207 |
Python3
# Python3 program to print all factors combination # vector of vector for storing # list of factor combinations factors_combination = [] # recursive function def compute_factors(current_no, n, product, single_list): global factors_combination # base case: if the product # exceeds our given number; # OR # current_no exceeds half the given n if ((current_no > int (n / 2 )) or (product > n)): return # if current list of factors # is contributing to n if (product = = n): # storing the list factors_combination.append(single_list) # printing all possible factors stored in # factors_combination for i in range ( len (factors_combination)): for j in range ( len (factors_combination[i])): print (factors_combination[i][j], end = " " ) print () factors_combination = [] # into factors_combination return # including current_no in our list single_list.append(current_no) # trying to get required # n with including current # current_no compute_factors(current_no, n, product * current_no, single_list) # excluding current_no from our list single_list.pop() # trying to get required n # without including current # current_no compute_factors(current_no + 1 , n, product, single_list) n = 16 # vector to store single list of factors # eg. 2,2,2,2 is one of the list for n=16 single_list = [] # compute_factors ( starting_no, given_n, # our_current_product, vector ) compute_factors( 2 , n, 1 , single_list) # This code is contributed by ukasp. |
C#
// C# program to print all factors combination using System; using System.Collections.Generic; class GFG { // vector of vector for storing // list of factor combinations static List<List< int >> factors_combination = new List<List< int >>(); // recursive function static void compute_factors( int current_no, int n, int product, List< int > single_list) { // base case: if the product // exceeds our given number; // OR // current_no exceeds half the given n if (current_no > (n / 2) || product > n) return ; // if current list of factors // is contributing to n if (product == n) { // storing the list factors_combination.Add(single_list); // printing all possible factors stored in // factors_combination for ( int i = 0; i < factors_combination.Count; i++) { for ( int j = 0; j < factors_combination[i].Count; j++) Console.Write(factors_combination[i][j] + " " ); } Console.WriteLine(); factors_combination = new List<List< int >>(); // into factors_combination return ; } // including current_no in our list single_list.Add(current_no); // trying to get required // n with including current // current_no compute_factors(current_no, n, product * current_no, single_list); // excluding current_no from our list single_list.RemoveAt(single_list.Count - 1); // trying to get required n // without including current // current_no compute_factors(current_no + 1, n, product, single_list); } static void Main() { int n = 16; // vector to store single list of factors // eg. 2,2,2,2 is one of the list for n=16 List< int > single_list = new List< int >(); // compute_factors ( starting_no, given_n, // our_current_product, vector ) compute_factors(2, n, 1, single_list); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript program to print all factors combination // vector of vector for storing // list of factor combinations let factors_combination = []; // recursive function function compute_factors(current_no, n, product, single_list) { // base case: if the product // exceeds our given number; // OR // current_no exceeds half the given n if ((current_no > parseInt(n / 2, 10)) || (product > n)) return ; // if current list of factors // is contributing to n if (product == n) { // storing the list factors_combination.push(single_list); // printing all possible factors stored in // factors_combination for (let i = 0; i < factors_combination.length; i++) { for (let j = 0; j < factors_combination[i].length; j++) { document.write(factors_combination[i][j] + " " ); } } document.write( "</br>" ); factors_combination = []; // into factors_combination return ; } // including current_no in our list single_list.push(current_no); // trying to get required // n with including current // current_no compute_factors(current_no, n, product * current_no, single_list); // excluding current_no from our list single_list.pop(); // trying to get required n // without including current // current_no compute_factors(current_no + 1, n, product, single_list); } let n = 16; // vector to store single list of factors // eg. 2,2,2,2 is one of the list for n=16 let single_list = []; // compute_factors ( starting_no, given_n, // our_current_product, vector ) compute_factors(2, n, 1, single_list); // This code is contributed by suresh07. </script> |
2 2 2 2 2 2 4 2 8 4 4
Time Complexity: O(n2) , n is the size of vector
Auxiliary Space: O(n2), n is the size of vector
Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...