Print all possible paths from top left to bottom right of a mXn matrix
The problem is to print all the possible paths from top left to bottom right of a mXn matrix with the constraints that from each cell you can either move only to right or down.
Examples :
Input : 1 2 3 4 5 6 Output : 1 4 5 6 1 2 5 6 1 2 3 6 Input : 1 2 3 4 Output : 1 2 4 1 3 4
The algorithm is a simple recursive algorithm, from each cell first print all paths by going down and then print all paths by going right. Do this recursively for each cell encountered.
Following are implementation of the above algorithm.
C++
// C++ program to Print all possible paths from // top left to bottom right of a mXn matrix #include<iostream> using namespace std; /* mat: Pointer to the starting of mXn matrix i, j: Current position of the robot (For the first call use 0,0) m, n: Dimensions of given the matrix pi: Next index to be filed in path array *path[0..pi-1]: The path traversed by robot till now (Array to hold the path need to have space for at least m+n elements) */ void printAllPathsUtil( int *mat, int i, int j, int m, int n, int *path, int pi) { // Reached the bottom of the matrix so we are left with // only option to move right if (i == m - 1) { for ( int k = j; k < n; k++) path[pi + k - j] = *((mat + i*n) + k); for ( int l = 0; l < pi + n - j; l++) cout << path[l] << " " ; cout << endl; return ; } // Reached the right corner of the matrix we are left with // only the downward movement. if (j == n - 1) { for ( int k = i; k < m; k++) path[pi + k - i] = *((mat + k*n) + j); for ( int l = 0; l < pi + m - i; l++) cout << path[l] << " " ; cout << endl; return ; } // Add the current cell to the path being generated path[pi] = *((mat + i*n) + j); // Print all the paths that are possible after moving down printAllPathsUtil(mat, i+1, j, m, n, path, pi + 1); // Print all the paths that are possible after moving right printAllPathsUtil(mat, i, j+1, m, n, path, pi + 1); // Print all the paths that are possible after moving diagonal // printAllPathsUtil(mat, i+1, j+1, m, n, path, pi + 1); } // The main function that prints all paths from // top left to bottom right in a matrix 'mat' of size mXn void printAllPaths( int *mat, int m, int n) { int *path = new int [m+n]; printAllPathsUtil(mat, 0, 0, m, n, path, 0); } // Driver program to test above functions int main() { int mat[2][3] = { {1, 2, 3}, {4, 5, 6} }; printAllPaths(*mat, 2, 3); return 0; } |
Java
import java.util.*; // Java program to Print all possible paths from // top left to bottom right of a mXn matrix public class MatrixTraversal { private static void printMatrix( int mat[][], int m, int n, int i, int j, List<Integer> list) { //return if i or j crosses matrix size if (i > m || j > n) return ; list.add(mat[i][j]); if (i == m && j == n){ System.out.println(list); } printMatrix(mat, m, n, i+ 1 , j, list); printMatrix(mat, m, n, i, j+ 1 , list); list.remove(list.size()- 1 ); } // Driver code public static void main(String[] args) { int m = 2 ; int n = 3 ; int mat[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 } }; List<Integer> list = new ArrayList<>(); printMatrix(mat, m- 1 , n- 1 , 0 , 0 , list); } } //This article is contributed by Harneet |
Python3
# Python3 program to Print all possible paths from # top left to bottom right of a mXn matrix ''' /* mat: Pointer to the starting of mXn matrix i, j: Current position of the robot (For the first call use 0, 0) m, n: Dimensions of given the matrix pi: Next index to be filed in path array *path[0..pi-1]: The path traversed by robot till now (Array to hold the path need to have space for at least m+n elements) */ ''' def printAllPathsUtil(mat, i, j, m, n, path, pi): # Reached the bottom of the matrix # so we are left with only option to move right if (i = = m - 1 ): for k in range (j, n): path[pi + k - j] = mat[i][k] for l in range (pi + n - j): print (path[l], end = " " ) print () return # Reached the right corner of the matrix # we are left with only the downward movement. if (j = = n - 1 ): for k in range (i, m): path[pi + k - i] = mat[k][j] for l in range (pi + m - i): print (path[l], end = " " ) print () return # Add the current cell # to the path being generated path[pi] = mat[i][j] # Print all the paths # that are possible after moving down printAllPathsUtil(mat, i + 1 , j, m, n, path, pi + 1 ) # Print all the paths # that are possible after moving right printAllPathsUtil(mat, i, j + 1 , m, n, path, pi + 1 ) # Print all the paths # that are possible after moving diagonal # printAllPathsUtil(mat, i+1, j+1, m, n, path, pi + 1); # The main function that prints all paths # from top left to bottom right # in a matrix 'mat' of size mXn def printAllPaths(mat, m, n): path = [ 0 for i in range (m + n)] printAllPathsUtil(mat, 0 , 0 , m, n, path, 0 ) # Driver Code mat = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ]] printAllPaths(mat, 2 , 3 ) # This code is contributed by Mohit Kumar |
C#
// C# program to Print all possible paths from // top left to bottom right of a mXn matrix using System; public class MatrixTraversal { /* mat: Pointer to the starting of mXn matrix i, j: Current position of the robot (For the first call use 0,0) m, n: Dimensions of given the matrix pi: Next index to be filed in path array *path[0..pi-1]: The path traversed by robot till now (Array to hold the path need to have space for at least m+n elements) */ private static void printMatrix( int [,]mat, int m, int n, int i, int j, int []path, int idx) { path[idx] = mat[i,j]; // Reached the bottom of the matrix so we are left with // only option to move right if (i == m - 1) { for ( int k = j + 1; k < n; k++) { path[idx + k - j] = mat[i,k]; } for ( int l = 0; l < idx + n - j; l++) { Console.Write(path[l] + " " ); } Console.WriteLine(); return ; } // Reached the right corner of the matrix we are left with // only the downward movement. if (j == n - 1) { for ( int k = i + 1; k < m; k++) { path[idx + k - i] = mat[k,j]; } for ( int l = 0; l < idx + m - i; l++) { Console.Write(path[l] + " " ); } Console.WriteLine(); return ; } // Print all the paths that are possible after moving down printMatrix(mat, m, n, i + 1, j, path, idx + 1); // Print all the paths that are possible after moving right printMatrix(mat, m, n, i, j + 1, path, idx + 1); } // Driver code public static void Main(String[] args) { int m = 2; int n = 3; int [,]mat = { { 1, 2, 3 }, { 4, 5, 6 } }; int maxLengthOfPath = m + n - 1; printMatrix(mat, m, n, 0, 0, new int [maxLengthOfPath], 0); } } // This code contributed by Rajput-Ji |
Javascript
<script> // Javascript program to Print all possible paths from // top left to bottom right of a mXn matrix /* mat: Pointer to the starting of mXn matrix i, j: Current position of the robot (For the first call use 0,0) m, n: Dimensions of given the matrix pi: Next index to be filed in path array *path[0..pi-1]: The path traversed by robot till now (Array to hold the path need to have space for at least m+n elements) */ function printMatrix(mat,m,n,i,j,path,idx) { path[idx] = mat[i][j]; // Reached the bottom of the matrix so we are left with // only option to move right if (i == m - 1) { for (let k = j + 1; k < n; k++) { path[idx + k - j] = mat[i][k]; } for (let l = 0; l < idx + n - j; l++) { document.write(path[l] + " " ); } document.write( "<br>" ); return ; } // Reached the right corner of the matrix we are left with // only the downward movement. if (j == n - 1) { for (let k = i + 1; k < m; k++) { path[idx + k - i] = mat[k][j]; } for (let l = 0; l < idx + m - i; l++) { document.write(path[l] + " " ); } document.write(); return ; } // Print all the paths that are possible after moving down printMatrix(mat, m, n, i + 1, j, path, idx + 1); // Print all the paths that are possible after moving right printMatrix(mat, m, n, i, j + 1, path, idx + 1); } // Driver code let m = 2; let n = 3; let mat = [[ 1, 2, 3 ], [ 4, 5, 6 ]]; let maxLengthOfPath = m + n - 1; printMatrix(mat, m, n, 0, 0, new Array(maxLengthOfPath), 0); // This code is contributed by ab2127 </script> |
1 4 5 6 1 2 5 6 1 2 3 6
Note that in the above code, the last line of printAllPathsUtil() is commented, If we uncomment this line, we get all the paths from the top left to bottom right of a nXm matrix if the diagonal movements are also allowed. And also if moving to some of the cells are not permitted then the same code can be improved by passing the restriction array to the above function and that is left as an exercise.
This article is contributed by Hariprasad NG. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
C++
// C++ program to Print all possible paths from // top left to bottom right of a mXn matrix #include <bits/stdc++.h> using namespace std; vector<vector< int >> allPaths; void findPathsUtil(vector<vector< int >> maze, int m, int n, int i, int j, vector< int > path, int index) { // If we reach the bottom of maze, // we can only move right if (i == m - 1) { for ( int k = j; k < n; k++) { //path.append(maze[i][k]) path[index + k - j] = maze[i][k]; } // If we hit this block, it means one // path is completed. Add it to paths // list and print cout << "[" << path[0] << ", " ; for ( int z = 1; z < path.size() - 1; z++) { cout << path[z] << ", " ; } cout << path[path.size() - 1] << "]" << endl; allPaths.push_back(path); return ; } // If we reach to the right most // corner, we can only move down if (j == n - 1) { for ( int k = i; k < m; k++) { path[index + k - i] = maze[k][j]; } //path.append(maze[j][k]) // If we hit this block, it means one // path is completed. Add it to paths // list and print cout << "[" << path[0] << ", " ; for ( int z = 1; z < path.size() - 1; z++) { cout << path[z] << ", " ; } cout << path[path.size() - 1] << "]" << endl; allPaths.push_back(path); return ; } // Add current element to the path list //path.append(maze[i][j]) path[index] = maze[i][j]; // Move down in y direction and call // findPathsUtil recursively findPathsUtil(maze, m, n, i + 1, j, path, index + 1); // Move down in y direction and // call findPathsUtil recursively findPathsUtil(maze, m, n, i, j + 1, path, index + 1); } void findPaths(vector<vector< int >> maze, int m, int n) { vector< int > path(m + n - 1, 0); findPathsUtil(maze, m, n, 0, 0, path, 0); } // Driver Code int main() { vector<vector< int >> maze{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; findPaths(maze, 3, 3); //print(allPaths) return 0; } // This code is contributed by divyeshrabadiya07 |
Java
// Java program to Print all possible paths from // top left to bottom right of a mXn matrix import java.io.*; import java.util.*; class GFG { static ArrayList<ArrayList<Integer>> allPaths = new ArrayList<ArrayList<Integer>>(); static void findPathsUtil(ArrayList<ArrayList<Integer>> maze, int m, int n, int i, int j, ArrayList<Integer> path, int index) { // If we reach the bottom of maze, // we can only move right if (i == m - 1 ) { for ( int k = j; k < n; k++) { // path.append(maze[i][k]) path.set(index + k - j, maze.get(i).get(k)); } // If we hit this block, it means one // path is completed. Add it to paths // list and print System.out.print( "[" + path.get( 0 ) + ", " ); for ( int z = 1 ; z < path.size() - 1 ; z++) { System.out.print(path.get(z) + ", " ); } System.out.println(path.get(path.size() - 1 ) + "]" ); allPaths.add(path); return ; } // If we reach to the right most // corner, we can only move down if (j == n - 1 ) { for ( int k = i; k < m; k++) { path.set(index + k - i,maze.get(k).get(j)); } // path.append(maze[j][k]) // If we hit this block, it means one // path is completed. Add it to paths // list and print System.out.print( "[" + path.get( 0 ) + ", " ); for ( int z = 1 ; z < path.size() - 1 ; z++) { System.out.print(path.get(z) + ", " ); } System.out.println(path.get(path.size() - 1 ) + "]" ); allPaths.add(path); return ; } // Add current element to the path list //path.append(maze[i][j]) path.set(index,maze.get(i).get(j)); // Move down in y direction and call // findPathsUtil recursively findPathsUtil(maze, m, n, i + 1 , j, path, index + 1 ); // Move down in y direction and // call findPathsUtil recursively findPathsUtil(maze, m, n, i, j + 1 , path, index + 1 ); } static void findPaths(ArrayList<ArrayList<Integer>> maze, int m, int n) { ArrayList<Integer> path = new ArrayList<Integer>(); for ( int i = 0 ; i < m + n - 1 ; i++) { path.add( 0 ); } findPathsUtil(maze, m, n, 0 , 0 , path, 0 ); } // Driver code public static void main (String[] args) { ArrayList<ArrayList<Integer>> maze = new ArrayList<ArrayList<Integer>>(); maze.add( new ArrayList<Integer> (Arrays.asList( 1 , 2 , 3 ))); maze.add( new ArrayList<Integer> (Arrays.asList( 4 , 5 , 6 ))); maze.add( new ArrayList<Integer> (Arrays.asList( 7 , 8 , 9 ))); findPaths(maze, 3 , 3 ); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program to Print all possible paths from # top left to bottom right of a mXn matrix allPaths = [] def findPaths(maze,m,n): path = [ 0 for d in range (m + n - 1 )] findPathsUtil(maze,m,n, 0 , 0 ,path, 0 ) def findPathsUtil(maze,m,n,i,j,path,index): global allPaths # if we reach the bottom of maze, we can only move right if i = = m - 1 : for k in range (j,n): #path.append(maze[i][k]) path[index + k - j] = maze[i][k] # if we hit this block, it means one path is completed. # Add it to paths list and print print (path) allPaths.append(path) return # if we reach to the right most corner, we can only move down if j = = n - 1 : for k in range (i,m): path[index + k - i] = maze[k][j] #path.append(maze[j][k]) # if we hit this block, it means one path is completed. # Add it to paths list and print print (path) allPaths.append(path) return # add current element to the path list #path.append(maze[i][j]) path[index] = maze[i][j] # move down in y direction and call findPathsUtil recursively findPathsUtil(maze, m, n, i + 1 , j, path, index + 1 ) # move down in y direction and call findPathsUtil recursively findPathsUtil(maze, m, n, i, j + 1 , path, index + 1 ) if __name__ = = '__main__' : maze = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] findPaths(maze, 3 , 3 ) #print(allPaths) |
C#
// C# program to Print all possible paths from // top left to bottom right of a mXn matrix using System; using System.Collections.Generic; class GFG { static List<List< int >> allPaths = new List<List< int >>(); static void findPathsUtil(List<List< int >> maze, int m, int n, int i, int j, List< int > path, int index) { // If we reach the bottom of maze, // we can only move right if (i == m - 1) { for ( int k = j; k < n; k++) { // path.append(maze[i][k]) path[index + k - j] = maze[i][k]; } // If we hit this block, it means one // path is completed. Add it to paths // list and print Console.Write( "[" + path[0] + ", " ); for ( int z = 1; z < path.Count - 1; z++) { Console.Write(path[z] + ", " ); } Console.WriteLine(path[path.Count - 1] + "]" ); allPaths.Add(path); return ; } // If we reach to the right most // corner, we can only move down if (j == n - 1) { for ( int k = i; k < m; k++) { path[index + k - i] = maze[k][j]; } // path.append(maze[j][k]) // If we hit this block, it means one // path is completed. Add it to paths // list and print Console.Write( "[" + path[0] + ", " ); for ( int z = 1; z < path.Count - 1; z++) { Console.Write(path[z] + ", " ); } Console.WriteLine(path[path.Count - 1] + "]" ); allPaths.Add(path); return ; } // Add current element to the path list //path.append(maze[i][j]) path[index] = maze[i][j]; // Move down in y direction and call // findPathsUtil recursively findPathsUtil(maze, m, n, i + 1, j, path, index + 1); // Move down in y direction and // call findPathsUtil recursively findPathsUtil(maze, m, n, i, j + 1, path, index + 1); } static void findPaths(List<List< int >> maze, int m, int n) { List< int > path = new List< int >(); for ( int i = 0; i < m + n - 1; i++) { path.Add(0); } findPathsUtil(maze, m, n, 0, 0, path, 0); } // Driver code static void Main() { List<List< int >> maze = new List<List< int >>(); maze.Add( new List< int > { 1, 2, 3 }); maze.Add( new List< int > { 4, 5, 6 }); maze.Add( new List< int > { 7, 8, 9 }); findPaths(maze, 3, 3); } } // This code is contributed by divyesh072019 |
Javascript
<script> // Javascript program to Print all possible paths from // top left to bottom right of a mXn matrix let allPaths = []; function findPathsUtil(maze, m, n, i, j, path, index) { // If we reach the bottom of maze, // we can only move right if (i == m - 1) { for (let k = j; k < n; k++) { //path.append(maze[i][k]) path[index + k - j] = maze[i][k]; } // If we hit this block, it means one // path is completed. Add it to paths // list and print document.write( "[" + path[0] + ", " ); for (let z = 1; z < path.length - 1; z++) { document.write(path[z] + ", " ); } document.write(path[path.length - 1] + "]" + "<br>" ); allPaths.push(path); return ; } // If we reach to the right most // corner, we can only move down if (j == n - 1) { for (let k = i; k < m; k++) { path[index + k - i] = maze[k][j]; } // path.append(maze[j][k]) // If we hit this block, it means one // path is completed. Add it to paths // list and print document.write( "[" + path[0] + ", " ); for (let z = 1; z < path.length - 1; z++) { document.write(path[z] + ", " ); } document.write(path[path.length - 1] + "]" + "<br>" ); allPaths.push(path); return ; } // Add current element to the path list // path.append(maze[i][j]) path[index] = maze[i][j]; // Move down in y direction and call // findPathsUtil recursively findPathsUtil(maze, m, n, i + 1, j, path, index + 1); // Move down in y direction and // call findPathsUtil recursively findPathsUtil(maze, m, n, i, j + 1, path, index + 1); } function findPaths(maze, m, n) { let path = new Array(m + n - 1).fill(0); findPathsUtil(maze, m, n, 0, 0, path, 0); } // Driver Code let maze = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]; findPaths(maze, 3, 3) // This code is contributed by Saurabh Jaiswal </script> |
[1, 4, 7, 8, 9] [1, 4, 5, 8, 9] [1, 4, 5, 6, 9] [1, 2, 5, 8, 9] [1, 2, 5, 6, 9] [1, 2, 3, 6, 9]
Note all the above approach take some extra time and space for solving the problem ,we can simply use backtracking algorithm to solve problem in optimized manner
C++
#include<bits/stdc++.h> using namespace std; // function to display the path void display(vector< int > &ans) { for ( auto i :ans ) { cout<<i << " " ; } cout<<endl; } // a function which check whether our step is safe or not bool issafe( int r, int c,vector<vector< int >>& visited, int n, int m) { return (r < n and c <m and visited[r] !=-1 ); // return true if all values satisfied else false } void FindPaths(vector<vector< int >> &grid, int r, int c, int n, int m,vector< int > &ans) { // when we hit the last cell we reach to destination then directly push the path if (r == n-1 and c == m-1) { ans.push_back(grid[r]); display(ans); // function to display the path stored in ans vector ans.pop_back(); // pop back because we need to backtrack to explore more path return ; } // we will store the current value in ch and mark the visited place as -1 int ch = grid[r]; ans.push_back(ch); // push the path in ans array grid[r] = -1; // mark the visited place with -1 // if is it safe to take next downward step then take it if (issafe(r+1,c,grid,n,m)) { FindPaths(grid,r+1,c,n,m,ans); } // if is it safe to take next rightward step then take it if (issafe(r,c+1,grid,n,m)) { FindPaths(grid,r,c+1,n,m,ans); } // backtracking step we need to make values original so to we can visit it by some another path grid[r] = ch; // remove the current path element we explore ans.pop_back(); return ; } int main() { int n = 3 ,m =3; vector<vector< int > >grid{ {1,2,3},{4,5,6},{7,8,9}}; vector< int >ans ; // it will store the path which we have covered FindPaths(grid,0,0,n,m,ans); // here 0,0 are initial position to start with return 0; } |
Java
import java.util.*; class Main { public static void main(String[] args) { int n = 3 , m = 3 ; int [][] grid = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; ArrayList<Integer> ans = new ArrayList<>(); // it will store the path // which we have covered FindPaths(grid, 0 , 0 , n, m, ans); // here 0,0 are initial position to // start with } // function to display the path public static void display(ArrayList<Integer> ans) { for ( int i : ans) { System.out.print(i + " " ); } System.out.println(); } // a function which check whether our step is safe or // not public static boolean issafe( int r, int c, int [][] visited, int n, int m) { return (r < n && c < m && visited[r] != - 1 ); } public static void FindPaths( int [][] grid, int r, int c, int n, int m, ArrayList<Integer> ans) { // when we hit the last cell we reach to destination // then directly push the path if (r == n - 1 && c == m - 1 ) { ans.add(grid[r]); display(ans); // function to display the path // stored in ans vector ans.remove( ans.size() - 1 ); // remove last element because we need // to backtrack to explore more path return ; } // we will store the current value in ch and mark // the visited place as -1 int ch = grid[r]; ans.add(ch); // add the path in ans array grid[r] = - 1 ; // mark the visited place with -1 // if is it safe to take next downward step then // take it if (issafe(r + 1 , c, grid, n, m)) { FindPaths(grid, r + 1 , c, n, m, ans); } // if is it safe to take next rightward step then // take it if (issafe(r, c + 1 , grid, n, m)) { FindPaths(grid, r, c + 1 , n, m, ans); } // backtracking step we need to make values original // so to we can visit it by some another path grid[r] = ch; // remove the current path element we explore ans.remove(ans.size() - 1 ); return ; } } // This code is contributed by Tapesh(tapeshdua420) |
Python3
# code class Solution: def __init__( self ): self .mapping = {} def printAllPaths( self , M, m, n): if not self .mapping.get((m,n)): if m = = 1 and n = = 1 : return [M[m - 1 ][n - 1 ]] else : res = [] if n > 1 : a = self .printAllPaths(M, m, n - 1 ) for i in a: if not isinstance (i, list ): i = [i] res.append(i + [M[m - 1 ][n - 1 ]]) if m > 1 : b = self .printAllPaths(M, m - 1 , n) for i in b: if not isinstance (i, list ): i = [i] res.append(i + [M[m - 1 ][n - 1 ]]) self .mapping[(m,n)] = res return self .mapping.get((m,n)) M = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] m, n = len (M), len (M[ 0 ]) a = Solution() res = a.printAllPaths(M, m, n) for i in res: print (i) |
C#
// C# program for above problem using System; using System.Collections.Generic; class Program { // function to display the path static void display(List< int > ans) { foreach ( var i in ans) { Console.Write(i + " " ); } Console.WriteLine(); } // a function which check whether our step is safe or not static bool issafe( int r, int c, int [][] visited, int n, int m) { return (r < n && c < m && visited[r] != -1); // return true if all values satisfied else false } static void FindPaths( int [][] grid, int r, int c, int n, int m, List< int > ans) { // when we hit the last cell we reach to destination then directly push the path if (r == n - 1 && c == m - 1) { ans.Add(grid[r]); display(ans); // function to display the path stored in ans vector ans.RemoveAt(ans.Count - 1); // remove last element because we need to backtrack to explore more path return ; } int ch = grid[r]; // we will store the current value in ch and mark the visited place as -1 ans.Add(ch); // add the path in ans array grid[r] = -1; // mark the visited place with -1 // if is it safe to take next downward step then take it if (issafe(r + 1, c, grid, n, m)) { FindPaths(grid, r + 1, c, n, m, ans); } // if is it safe to take next rightward step then take it if (issafe(r, c + 1, grid, n, m)) { FindPaths(grid, r, c + 1, n, m, ans); } // backtracking step we need to make values original so to we can visit it by some another path grid[r] = ch; // remove the current path element we explore ans.RemoveAt(ans.Count - 1); } static void Main() { int n = 3, m = 3; int [][] grid = new int [n][]; grid[0] = new [] { 1, 2, 3 }; grid[1] = new [] { 4, 5, 6 }; grid[2] = new [] { 7, 8, 9 }; List< int > ans = new List< int >(); // it will store the path which we have covered FindPaths(grid, 0, 0, n, m, ans); // here 0,0 are initial position to start with } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
// function to display the path function display(ans) { console.log(ans.join( " " )) } // a function which check whether our step is safe or // not function issafe(r, c, visited, n, m) { return (r < n && c < m && visited[r] != -1); } function FindPaths(grid, r, c, n, m, ans) { // when we hit the last cell we reach to destination // then directly push the path if (r == n - 1 && c == m - 1) { ans.push(grid[r]); display(ans); // function to display the path // stored in ans vector ans.pop(); // remove last element because we need // to backtrack to explore more path return ; } // we will store the current value in ch and mark // the visited place as -1 ch = grid[r]; ans.push(ch); // add the path in ans array grid[r] = -1; // mark the visited place with -1 // if is it safe to take next downward step then // take it if (issafe(r + 1, c, grid, n, m)) { FindPaths(grid, r + 1, c, n, m, ans); } // if is it safe to take next rightward step then // take it if (issafe(r, c + 1, grid, n, m)) { FindPaths(grid, r, c + 1, n, m, ans); } // backtracking step we need to make values original // so to we can visit it by some another path grid[r] = ch; // remove the current path element we explore ans.pop() return ; } let n = 3, m = 3; let grid = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]; let ans = [] // it will store the path // which we have covered FindPaths(grid, 0, 0, n, m, ans); // here 0,0 are initial position to // start with // This code is contributed by phasing17 |
1 4 7 8 9 1 4 5 8 9 1 4 5 6 9 1 2 5 8 9 1 2 5 6 9 1 2 3 6 9
So by these method you can optimized your code.
TC- O(2^n*m) , SC – O(n)
Another Approach (Iterative) :
1. In this approach we will use BFS (breadth first search) to find all possible paths.
2. We will make a queue which contains the following information :
a) Vector that stores the path up to a certain cell.
b) coordinates of the cell.
3. We will start from the top-left cell and push cell value and coordinates in the queue.
4. We will keep on exploring right and down cell (if possible) until queue is not empty
and push them in the queue by updating the current cell vector.
5. If we reach the last cell then we have got one answer and we will print the answer vector.
C++
// c++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // this structure stores information // about a particular cell i.e // path upto that cell and cell's // coordinates struct info { vector< int > path; int i; int j; }; void printAllPaths(vector<vector< int > >& maze) { int n = maze.size(); int m = maze[0].size(); queue<info> q; // pushing top-left cell into the queue q.push({ { maze[0][0] }, 0, 0 }); while (!q.empty()) { info p = q.front(); q.pop(); // if we reached the bottom-right cell // i.e the destination then print the path if (p.i == n - 1 && p.j == m - 1) { for ( auto x : p.path) cout << x << " " ; cout << "\n" ; } // if we are in the last row // then only right movement is possible else if (p.i == n - 1) { vector< int > temp = p.path; // updating the current path temp.push_back(maze[p.i][p.j + 1]); q.push({ temp, p.i, p.j + 1 }); } // if we are in the last column // then only down movement is possible else if (p.j == m - 1) { vector< int > temp = p.path; // updating the current path temp.push_back(maze[p.i + 1][p.j]); q.push({ temp, p.i + 1, p.j }); } // else both right and down movement // are possible else { // right movement vector< int > temp = p.path; // updating the current path temp.push_back(maze[p.i][p.j + 1]); q.push({ temp, p.i, p.j + 1 }); // down movement temp.pop_back(); // updating the current path temp.push_back(maze[p.i + 1][p.j]); q.push({ temp, p.i + 1, p.j }); } } } // Driver Code int main() { vector<vector< int > > maze{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; printAllPaths(maze); return 0; } |
Java
// Java implementation for the above approach import java.util.*; class GFG { // Driver Code public static void main(String[] args) { int [][] maze = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; printAllPaths(maze); } public static void printAllPaths( int [][] maze) { int n = maze.length; int m = maze[ 0 ].length; Queue<info> q = new LinkedList<>(); // pushing top-left cell into the queue q.add( new info( new ArrayList<>(Arrays.asList(maze[ 0 ][ 0 ])), 0 , 0 )); while (!q.isEmpty()) { info p = q.poll(); // if we reached the bottom-right cell // i.e the destination then print the path if (p.i == n - 1 && p.j == m - 1 ) { for ( int x : p.path) System.out.print(x + " " ); System.out.println(); } // if we are in the last row // then only right movement is possible else if (p.i == n - 1 ) { List<Integer> temp = new ArrayList<>(p.path); // updating the current path temp.add(maze[p.i][p.j + 1 ]); q.add( new info(temp, p.i, p.j + 1 )); } // if we are in the last column // then only down movement is possible else if (p.j == m - 1 ) { List<Integer> temp = new ArrayList<>(p.path); // updating the current path temp.add(maze[p.i + 1 ][p.j]); q.add( new info(temp, p.i + 1 , p.j)); } // else both right and down movement // are possible else { // right movement List<Integer> temp = new ArrayList<>(p.path); // updating the current path temp.add(maze[p.i][p.j + 1 ]); q.add( new info(temp, p.i, p.j + 1 )); // down movement temp.remove(temp.size() - 1 ); // updating the current path temp.add(maze[p.i + 1 ][p.j]); q.add( new info(temp, p.i + 1 , p.j)); } } } } // this class stores information // about a particular cell i.e // path upto that cell and cell's // coordinates class info { List<Integer> path; int i; int j; public info(List<Integer> path, int i, int j) { this .path = new ArrayList<Integer>(path); this .i = i; this .j = j; } } // This code is contributed by Tapesh(tapeshdua420) |
Python3
# Python implementation for the above approach from collections import deque # this structure stores information # about a particular cell i.e # path upto that cell and cell's # coordinates class info: def __init__( self , path, i, j): self .path = path self .i = i self .j = j def printAllPaths(maze): n = len (maze) m = len (maze[ 0 ]) q = deque() # pushing top-left cell into the queue q.append(info([maze[ 0 ][ 0 ]], 0 , 0 )) while len (q) > 0 : p = q.popleft() # if we reached the bottom-right cell # i.e the destination then print the path if p.i = = n - 1 and p.j = = m - 1 : for x in p.path: print (x, end = " " ) print () # if we are in the last row # then only right movement is possible elif p.i = = n - 1 : temp = p.path[:] # updating the current path temp.append(maze[p.i][p.j + 1 ]) q.append(info(temp, p.i, p.j + 1 )) # if we are in the last column # then only down movement is possible elif p.j = = m - 1 : temp = p.path[:] # updating the current path temp.append(maze[p.i + 1 ][p.j]) q.append(info(temp, p.i + 1 , p.j)) # else both right and down movement # are possible else : # right movement temp = p.path[:] # updating the current path temp.append(maze[p.i][p.j + 1 ]) q.append(info(temp, p.i, p.j + 1 )) # down movement temp = temp[: - 1 ] # updating the current path temp.append(maze[p.i + 1 ][p.j]) q.append(info(temp, p.i + 1 , p.j)) # Driver Code maze = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] printAllPaths(maze) # This code is contributed by Tapesh(tapeshdua420) |
C#
// C# implementation for the above approach using System; using System.Collections.Generic; class Program { // Driver Code static void Main( string [] args) { int [, ] maze = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; printAllPaths(maze); } public static void printAllPaths( int [, ] maze) { int n = maze.GetLength(0); int m = maze.GetLength(1); Queue<info> q = new Queue<info>(); // pushing top-left cell into the queue q.Enqueue( new info( new List< int >( new int [] { maze[0, 0] }), 0, 0)); while (q.Count != 0) { info p = q.Dequeue(); // if we reached the bottom-right cell // i.e the destination then print the path if (p.i == n - 1 && p.j == m - 1) { foreach ( int x in p.path) Console.Write(x + " " ); Console.WriteLine(); } // if we are in the last row // then only right movement is possible else if (p.i == n - 1) { List< int > temp = new List< int >(p.path); // updating the current path temp.Add(maze[p.i, p.j + 1]); q.Enqueue( new info(temp, p.i, p.j + 1)); } // if we are in the last column // then only down movement is possible else if (p.j == m - 1) { List< int > temp = new List< int >(p.path); // updating the current path temp.Add(maze[p.i + 1, p.j]); q.Enqueue( new info(temp, p.i + 1, p.j)); } // else both right and down movement // are possible else { // right movement List< int > temp = new List< int >(p.path); // updating the current path temp.Add(maze[p.i, p.j + 1]); q.Enqueue( new info(temp, p.i, p.j + 1)); // down movement temp.RemoveAt(temp.Count - 1); // updating the current path temp.Add(maze[p.i + 1, p.j]); q.Enqueue( new info(temp, p.i + 1, p.j)); } } } } // this class stores information // about a particular cell i.e // path upto that cell and cell's // coordinates class info { public List< int > path; public int i; public int j; public info(List< int > path, int i, int j) { this .path = new List< int >(path); this .i = i; this .j = j; } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
// JavaScript implementation for the above approach // this class stores information // about a particular cell i.e // path upto that cell and cell's // coordinates function info(path, i, j) { this .path = path.slice(); this .i = i; this .j = j; } function printAllPaths(maze) { var n = maze.length; var m = maze[0].length; var q = []; // pushing top-left cell into the queue q.push( new info([maze[0][0]], 0, 0)); while (q.length != 0) { var p = q.shift(); // if we reached the bottom-right cell // i.e the destination then print the path if (p.i == n - 1 && p.j == m - 1) { for ( var x of p.path) process.stdout.write(x + " " ); console.log(); } // if we are in the last row // then only right movement is possible else if (p.i == n - 1) { var temp = p.path.slice(); // updating the current path temp.push(maze[p.i][p.j + 1]); q.push( new info(temp, p.i, p.j + 1)); } // if we are in the last column // then only down movement is possible else if (p.j == m - 1) { var temp = p.path.slice(); // updating the current path temp.push(maze[p.i + 1][p.j]); q.push( new info(temp, p.i + 1, p.j)); } // else both right and down movement // are possible else { // right movement var temp = p.path.slice(); // updating the current path temp.push(maze[p.i][p.j + 1]); q.push( new info(temp, p.i, p.j + 1)); // down movement temp.pop(); // updating the current path temp.push(maze[p.i + 1][p.j]); q.push( new info(temp, p.i + 1, p.j)); } } } // Driver Code var maze = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; printAllPaths(maze); // This code is contributed by Tapesh(tapeshdua420) |
1 2 3 6 9 1 2 5 6 9 1 2 5 8 9 1 4 5 6 9 1 4 5 8 9 1 4 7 8 9
Please Login to comment...