Primitive root of a prime number n modulo n
Given a prime number n, the task is to find its primitive root under modulo n. The primitive root of a prime number n is an integer r between[1, n-1] such that the values of r^x(mod n) where x is in the range[0, n-2] are different. Return -1 if n is a non-prime number.
Examples:
Input : 7 Output : Smallest primitive root = 3 Explanation: n = 7 3^0(mod 7) = 1 3^1(mod 7) = 3 3^2(mod 7) = 2 3^3(mod 7) = 6 3^4(mod 7) = 4 3^5(mod 7) = 5 Input : 761 Output : Smallest primitive root = 6
A simple solution is to try all numbers from 2 to n-1. For every number r, compute values of r^x(mod n) where x is in the range[0, n-2]. If all these values are different, then return r, else continue for the next value of r. If all values of r are tried, return -1.
An efficient solution is based on the below facts.
If the multiplicative order of a number r modulo n is equal to Euler Totient Function Φ(n) ( note that the Euler Totient Function for a prime n is n-1), then it is a primitive root.
1- Euler Totient Function phi = n-1 [Assuming n is prime] 1- Find all prime factors of phi. 2- Calculate all powers to be calculated further using (phi/prime-factors) one by one. 3- Check for all numbered for all powers from i=2 to n-1 i.e. (i^ powers) modulo n. 4- If it is 1 then 'i' is not a primitive root of n. 5- If it is never 1 then return i;.
Although there can be multiple primitive roots for a prime number, we are only concerned with the smallest one. If you want to find all the roots, then continue the process till p-1 instead of breaking up by finding the first primitive root.
C++
// C++ program to find primitive root of a // given number n #include<bits/stdc++.h> using namespace std; // Returns true if n is prime bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n%2 == 0 || n%3 == 0) return false ; for ( int i=5; i*i<=n; i=i+6) if (n%i == 0 || n%(i+2) == 0) return false ; return true ; } /* Iterative Function to calculate (x^n)%p in O(logy) */ int power( int x, unsigned int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res*x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x*x) % p; } return res; } // Utility function to store prime factors of a number void findPrimefactors(unordered_set< int > &s, int n) { // Print the number of 2s that divide n while (n%2 == 0) { s.insert(2); n = n/2; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for ( int i = 3; i <= sqrt (n); i = i+2) { // While i divides n, print i and divide n while (n%i == 0) { s.insert(i); n = n/i; } } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2) s.insert(n); } // Function to find smallest primitive root of n int findPrimitive( int n) { unordered_set< int > s; // Check if n is prime or not if (isPrime(n)== false ) return -1; // Find value of Euler Totient function of n // Since n is a prime number, the value of Euler // Totient function is n-1 as there are n-1 // relatively prime numbers. int phi = n-1; // Find prime factors of phi and store in a set findPrimefactors(s, phi); // Check for every number from 2 to phi for ( int r=2; r<=phi; r++) { // Iterate through all prime factors of phi. // and check if we found a power with value 1 bool flag = false ; for ( auto it = s.begin(); it != s.end(); it++) { // Check if r^((phi)/primefactors) mod n // is 1 or not if (power(r, phi/(*it), n) == 1) { flag = true ; break ; } } // If there was no power with value 1. if (flag == false ) return r; } // If no primitive root found return -1; } // Driver code int main() { int n = 761; cout << " Smallest primitive root of " << n << " is " << findPrimitive(n); return 0; } |
Java
// Java program to find primitive root of a // given number n import java.util.*; class GFG { // Returns true if n is prime static boolean isPrime( int n) { // Corner cases if (n <= 1 ) { return false ; } if (n <= 3 ) { return true ; } // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0 ) { return false ; } for ( int i = 5 ; i * i <= n; i = i + 6 ) { if (n % i == 0 || n % (i + 2 ) == 0 ) { return false ; } } return true ; } /* Iterative Function to calculate (x^n)%p in O(logy) */ static int power( int x, int y, int p) { int res = 1 ; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0 ) { // If y is odd, multiply x with result if (y % 2 == 1 ) { res = (res * x) % p; } // y must be even now y = y >> 1 ; // y = y/2 x = (x * x) % p; } return res; } // Utility function to store prime factors of a number static void findPrimefactors(HashSet<Integer> s, int n) { // Print the number of 2s that divide n while (n % 2 == 0 ) { s.add( 2 ); n = n / 2 ; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for ( int i = 3 ; i <= Math.sqrt(n); i = i + 2 ) { // While i divides n, print i and divide n while (n % i == 0 ) { s.add(i); n = n / i; } } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2 ) { s.add(n); } } // Function to find smallest primitive root of n static int findPrimitive( int n) { HashSet<Integer> s = new HashSet<Integer>(); // Check if n is prime or not if (isPrime(n) == false ) { return - 1 ; } // Find value of Euler Totient function of n // Since n is a prime number, the value of Euler // Totient function is n-1 as there are n-1 // relatively prime numbers. int phi = n - 1 ; // Find prime factors of phi and store in a set findPrimefactors(s, phi); // Check for every number from 2 to phi for ( int r = 2 ; r <= phi; r++) { // Iterate through all prime factors of phi. // and check if we found a power with value 1 boolean flag = false ; for (Integer a : s) { // Check if r^((phi)/primefactors) mod n // is 1 or not if (power(r, phi / (a), n) == 1 ) { flag = true ; break ; } } // If there was no power with value 1. if (flag == false ) { return r; } } // If no primitive root found return - 1 ; } // Driver code public static void main(String[] args) { int n = 761 ; System.out.println( " Smallest primitive root of " + n + " is " + findPrimitive(n)); } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python3 program to find primitive root # of a given number n from math import sqrt # Returns True if n is prime def isPrime( n): # Corner cases if (n < = 1 ): return False if (n < = 3 ): return True # This is checked so that we can skip # middle five numbers in below loop if (n % 2 = = 0 or n % 3 = = 0 ): return False i = 5 while (i * i < = n): if (n % i = = 0 or n % (i + 2 ) = = 0 ) : return False i = i + 6 return True """ Iterative Function to calculate (x^n)%p in O(logy) */""" def power( x, y, p): res = 1 # Initialize result x = x % p # Update x if it is more # than or equal to p while (y > 0 ): # If y is odd, multiply x with result if (y & 1 ): res = (res * x) % p # y must be even now y = y >> 1 # y = y/2 x = (x * x) % p return res # Utility function to store prime # factors of a number def findPrimefactors(s, n) : # Print the number of 2s that divide n while (n % 2 = = 0 ) : s.add( 2 ) n = n / / 2 # n must be odd at this point. So we can # skip one element (Note i = i +2) for i in range ( 3 , int (sqrt(n)), 2 ): # While i divides n, print i and divide n while (n % i = = 0 ) : s.add(i) n = n / / i # This condition is to handle the case # when n is a prime number greater than 2 if (n > 2 ) : s.add(n) # Function to find smallest primitive # root of n def findPrimitive( n) : s = set () # Check if n is prime or not if (isPrime(n) = = False ): return - 1 # Find value of Euler Totient function # of n. Since n is a prime number, the # value of Euler Totient function is n-1 # as there are n-1 relatively prime numbers. phi = n - 1 # Find prime factors of phi and store in a set findPrimefactors(s, phi) # Check for every number from 2 to phi for r in range ( 2 , phi + 1 ): # Iterate through all prime factors of phi. # and check if we found a power with value 1 flag = False for it in s: # Check if r^((phi)/primefactors) # mod n is 1 or not if (power(r, phi / / it, n) = = 1 ): flag = True break # If there was no power with value 1. if (flag = = False ): return r # If no primitive root found return - 1 # Driver Code n = 761 print ( "Smallest primitive root of" , n, "is" , findPrimitive(n)) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# program to find primitive root of a // given number n using System; using System.Collections.Generic; class GFG { // Returns true if n is prime static bool isPrime( int n) { // Corner cases if (n <= 1) { return false ; } if (n <= 3) { return true ; } // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) { return false ; } for ( int i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false ; } } return true ; } /* Iterative Function to calculate (x^n)%p in O(logy) */ static int power( int x, int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y % 2 == 1) { res = (res * x) % p; } // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // Utility function to store prime factors of a number static void findPrimefactors(HashSet< int > s, int n) { // Print the number of 2s that divide n while (n % 2 == 0) { s.Add(2); n = n / 2; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for ( int i = 3; i <= Math.Sqrt(n); i = i + 2) { // While i divides n, print i and divide n while (n % i == 0) { s.Add(i); n = n / i; } } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2) { s.Add(n); } } // Function to find smallest primitive root of n static int findPrimitive( int n) { HashSet< int > s = new HashSet< int >(); // Check if n is prime or not if (isPrime(n) == false ) { return -1; } // Find value of Euler Totient function of n // Since n is a prime number, the value of Euler // Totient function is n-1 as there are n-1 // relatively prime numbers. int phi = n - 1; // Find prime factors of phi and store in a set findPrimefactors(s, phi); // Check for every number from 2 to phi for ( int r = 2; r <= phi; r++) { // Iterate through all prime factors of phi. // and check if we found a power with value 1 bool flag = false ; foreach ( int a in s) { // Check if r^((phi)/primefactors) mod n // is 1 or not if (power(r, phi / (a), n) == 1) { flag = true ; break ; } } // If there was no power with value 1. if (flag == false ) { return r; } } // If no primitive root found return -1; } // Driver code public static void Main(String[] args) { int n = 761; Console.WriteLine( " Smallest primitive root of " + n + " is " + findPrimitive(n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to find primitive root of a // given number n // Returns true if n is prime function isPrime(n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } /* Iterative Function to calculate (x^n)%p in O(logy) */ function power(x, y, p) { let res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // Utility function to store prime factors of a number function findPrimefactors(s, n) { // Print the number of 2s that divide n while (n % 2 == 0) { s.add(2); n = n / 2; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for (let i = 3; i <= Math.sqrt(n); i = i + 2) { // While i divides n, print i and divide n while (n % i == 0) { s.add(i); n = n / i; } } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2) s.add(n); } // Function to find smallest primitive root of n function findPrimitive(n) { let s = new Set(); // Check if n is prime or not if (isPrime(n) == false ) return -1; // Find value of Euler Totient function of n // Since n is a prime number, the value of Euler // Totient function is n-1 as there are n-1 // relatively prime numbers. let phi = n - 1; // Find prime factors of phi and store in a set findPrimefactors(s, phi); // Check for every number from 2 to phi for (let r = 2; r <= phi; r++) { // Iterate through all prime factors of phi. // and check if we found a power with value 1 let flag = false ; for (let it of s) { // Check if r^((phi)/primefactors) mod n // is 1 or not if (power(r, phi / it, n) == 1) { flag = true ; break ; } } // If there was no power with value 1. if (flag == false ) return r; } // If no primitive root found return -1; } // Driver code let n = 761; document.write( " Smallest primitive root of " + n + " is " + findPrimitive(n)); // This code is contributed by gfgking </script> |
Output:
Smallest primitive root of 761 is 6
Time Complexity : O(n^2 * logn)
Space Complexity : O(sqrt(n))
This article is contributed by Niteesh kumar and Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...