Position of rightmost different bit
Given two numbers m and n. Find the position of the rightmost different bit in the binary representation of numbers. It is guaranteed that such a bit exists
Examples:
Input: m = 11, n = 9
Output: 2
Explanation:
(11)10 = (1011)2
(9)10 = (1001)2
It can be seen that 2nd bit from the right is differentInput: m = 52, n = 4
Output: 5
Explanation:
(52)10 = (110100)2
(4)10 = (100)2, can also be written as = (000100)2
It can be seen that 5th bit from the right is different
Position of rightmost different bit using XOR:
Get the bitwise xor of m and n. Let it be xor_value = m ^ n. Now, find the position of rightmost set bit in xor_value. As 0 XOR 1 and 1 XOR 0 equals 1, so if a bit is set in the XOR value then it means that the bits at that position were different in the given numbers
An efficient way to find the rightmost set bit:
log2(n & -n) + 1 gives us the position of the rightmost set bit.
(-n) reverses all the bits from left to right till the last set bitfor example: n = 16810
binary signed 2’s complement of n = 00000000101010002
binary signed 2’s complement of -n = 11111111010110002
∴ (n & -n) = 00000000000010002 = 8
now, log2(n & -n) = log2(8) = 3
log2(n & -n) + 1 = 4 (position of rightmost set bit)
Below is the implementation of the above approach:
C++
// C++ implementation to find the position // of rightmost different bit #include <bits/stdc++.h> using namespace std; // Function to find the position of // rightmost set bit in 'n' // returns 0 if there is no set bit. int getRightMostSetBit( int n) { // to handle edge case when n = 0. if (n == 0) return 0; return log2(n & -n) + 1; } // Function to find the position of // rightmost different bit in the // binary representations of 'm' and 'n' // returns 0 if there is no // rightmost different bit. int posOfRightMostDiffBit( int m, int n) { // position of rightmost different // bit return getRightMostSetBit(m ^ n); } // Driver code int main() { int m = 52, n = 24; // Function call cout << "Position of rightmost different bit:" << posOfRightMostDiffBit(m, n) << endl; return 0; } |
Java
// Java implementation to find the position // of rightmost different bit class GFG { // Function to find the position of // rightmost set bit in 'n' // return 0 if there is no set bit. static int getRightMostSetBit( int n) { if (n == 0 ) return 0 ; return ( int )((Math.log10(n & -n)) / Math.log10( 2 )) + 1 ; } // Function to find the position of // rightmost different bit in the // binary representations of 'm' and 'n' static int posOfRightMostDiffBit( int m, int n) { // position of rightmost different bit return getRightMostSetBit(m ^ n); } // Driver code public static void main(String arg[]) { int m = 52 , n = 4 ; // Function call System.out.print( "Position = " + posOfRightMostDiffBit(m, n)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python implementation # to find the position # of rightmost different bit import math # Function to find the position of # rightmost set bit in 'n' def getRightMostSetBit(n): if (n = = 0 ): return 0 return math.log2(n & - n) + 1 # Function to find the position of # rightmost different bit in the # binary representations of 'm' and 'n' def posOfRightMostDiffBit(m, n): # position of rightmost different # bit return getRightMostSetBit(m ^ n) # Driver code if __name__ = = "__main__" : m = 52 n = 4 # Function call print ( "position = " , int (posOfRightMostDiffBit(m, n))) # This code is contributed # by Anant Agarwal. |
C#
// C# implementation to find the position // of rightmost different bit using System; class GFG { // Function to find the position of // rightmost set bit in 'n' static int getRightMostSetBit( int n) { if (n == 0) return 0; return ( int )((Math.Log10(n & -n)) / Math.Log10(2)) + 1; } // Function to find the position of // rightmost different bit in the // binary representations of 'm' and 'n' static int posOfRightMostDiffBit( int m, int n) { // position of rightmost different bit return getRightMostSetBit(m ^ n); } // Driver code public static void Main() { int m = 52, n = 4; // Function call Console.Write( "Position = " + posOfRightMostDiffBit(m, n)); } } // This code is contributed by Smitha. |
PHP
<?php // PHP implementation to // find the position of // rightmost different bit // Function to find the position // of rightmost set bit in 'n' function getRightMostSetBit( $n ) { if ( $n == 0) return 0; return log( $n & - $n , (2)) + 1; } // Function to find the position of // rightmost different bit in the // binary representations of 'm' // and 'n' function posOfRightMostDiffBit( $m , $n ) { // position of rightmost // different bit return getRightMostSetBit( $m ^ $n ); } // Driver Code $m = 52; $n = 4; // Function call echo posOfRightMostDiffBit( $m , $n ); // This code is contributed by Ajit ?> |
Javascript
<script> // JavaScript implementation to find the position // of rightmost different bit // Function to find the position of // rightmost set bit in 'n' // returns 0 if there is no set bit. function getRightMostSetBit(n) { // to handle edge case when n = 0. if (n == 0) return 0; return Math.log2(n & -n) + 1; } // Function to find the position of // rightmost different bit in the // binary representations of 'm' and 'n' // returns 0 if there is no // rightmost different bit. function posOfRightMostDiffBit(m, n) { // position of rightmost different // bit return getRightMostSetBit(m ^ n); } // Driver program let m = 52, n = 24; document.write( "Position of rightmost different bit:" + posOfRightMostDiffBit(m, n) + "<br>" ); // This code is contributed by Surbhi Tyagi. </script> |
Position of rightmost different bit:3
Time Complexity: O(log2 N), this time complexity is equal to O(1) as one has to check for at most 31 bits only
Auxiliary Space: O(1)
Position of rightmost different bit using ffs() function:
ffs() function searches the first set bit from the right side and then returns the index of that bit (1-based indexing). So we can use this function on the XOR of both the values to get the index of the rightmost different bit
Below is the implementation of the above approach:
C++
// C++ implementation to find the // position of rightmost different // bit in two number. #include <bits/stdc++.h> using namespace std; // function to find rightmost different // bit in two numbers. int posOfRightMostDiffBit( int m, int n) { return ffs(m ^ n); } // Driver code int main() { int m = 52, n = 4; // Function call cout << "Position = " << posOfRightMostDiffBit(m, n); return 0; } |
Java
// Java implementation to find the // position of rightmost different // bit in two number. import java.util.*; class GFG { // function to find rightmost // different bit in two numbers. static int posOfRightMostDiffBit( int m, int n) { return ( int )Math.floor( Math.log10(Math.pow(m ^ n, 2 ))) + 2 ; } // Driver code public static void main(String[] args) { int m = 52 , n = 4 ; // Function call System.out.println( "Position = " + posOfRightMostDiffBit(m, n)); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 implementation to find the # position of rightmost different # bit in two number. from math import floor, log10 # Function to find rightmost different # bit in two numbers. def posOfRightMostDiffBit(m, n): return floor(log10( pow (m ^ n, 2 ))) + 2 # Driver code if __name__ = = '__main__' : m, n = 52 , 4 # Function call print ( "Position = " , posOfRightMostDiffBit(m, n)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation to find the // position of rightmost different // bit in two number. using System; class GFG { // function to find rightmost // different bit in two numbers. static int posOfRightMostDiffBit( int m, int n) { return ( int )Math.Floor( Math.Log10(Math.Pow(m ^ n, 2))) + 2; } // Driver code public static void Main(String[] args) { int m = 52, n = 4; // Function call Console.Write( "Position = " + posOfRightMostDiffBit(m, n)); } } // This code is contributed by shivanisinghss2110 |
PHP
<?php // PHP implementation to find the // position of rightmost different // bit in two number. // function to find rightmost // different bit in two numbers. function posOfRightMostDiffBit( $m , $n ) { $t = floor (log( $m ^ $n , 2)); return $t ; } // Driver code $m = 52; $n = 4; // Function call echo "Position = " , posOfRightMostDiffBit( $m , $n ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript implementation to find the // position of rightmost different // bit in two number. // function to find rightmost // different bit in two numbers. function posOfRightMostDiffBit(m, n) { return parseInt(Math.floor (Math.log10(Math.pow(m ^ n, 2))), 10) + 2; } let m = 52, n = 4; document.write( "Position = " + posOfRightMostDiffBit(m, n) ); </script> |
Position = 5
Time Complexity: O(log2 N), this time complexity is equal to O(1) as one has to check for at most 31 bits only
Auxiliary Space: O(1)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Please Login to comment...