Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

A Peterson Graph Problem

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

The following graph G is called a Petersen graph and its vertices have been numbered from 0 to 9. Some letters have also been assigned to vertices of G, as can be seen from the following picture: 

Let’s consider a walk W in graph G, which consists of L vertices W1, W2, …, WL. A string S of L letters ‘A’ – ‘E’ is realized by walking W if the sequence of letters written along W is equal to S. Vertices can be visited multiple times while walking along W.

For example, S = ‘ABBECCD’ is realized by W = (0, 1, 6, 9, 7, 2, 3). Determine whether there is a walk W that realizes a given string S in graph G and if so then find the lexicographically least such walk. The only line of input contains one string S. If there is no walk W which realizes S, then output -1 otherwise, you should output the least lexicographical walk W which realizes S. 
 

Example of a Petersen Graph

Example of a Petersen Graph

Examples: 

Input : s = 'ABB'
Output: 016
Explanation: As we can see in the graph
             the path from ABB is 016.
Input : s = 'AABE'
Output :-1
Explanation: As there is no path that
             exists, hence output is -1.

Algorithm for a Peterson Graph Problem:

petersonGraphWalk(S, v):

begin
    res := starting vertex
    for each character c in S except the first one, do
        if there is an edge between v and c in outer graph, then      
            v := c
        else if there is an edge between v and c+5 in inner graph, then
            v := c + 5
        else
            return false
        end if
            put v into res
        done
    return true
end

Below is the implementation of the above algorithm:

C++




// C++ program to find the
// path in Peterson graph
#include <bits/stdc++.h>
using namespace std;
 
// path to be checked
char S[100005];
 
// adjacency matrix.
bool adj[10][10];
 
// resulted path - way
char result[100005];
 
// we are applying breadth first search
// here
bool findthepath(char* S, int v)
{
    result[0] = v + '0';
    for (int i = 1; S[i]; i++) {
         
        // first traverse the outer graph
        if (adj[v][S[i] - 'A'] || adj[S[i] -
                              'A'][v]) {
            v = S[i] - 'A';
        }
 
        // then traverse the inner graph
        else if (adj[v][S[i] - 'A' + 5] ||
                 adj[S[i] - 'A' + 5][v]) {
            v = S[i] - 'A' + 5;
        }
 
        // if the condition failed to satisfy
        // return false
        else
            return false;
 
        result[i] = v + '0';
    }
 
    return true;
}
 
// driver code
int main()
{
    // here we have used adjacency matrix to make
    // connections between the connected nodes
    adj[0][1] = adj[1][2] = adj[2][3] = adj[3][4] =
    adj[4][0] = adj[0][5] = adj[1][6] = adj[2][7] =
    adj[3][8] = adj[4][9] = adj[5][7] = adj[7][9] =
    adj[9][6] = adj[6][8] = adj[8][5] = true;
     
    // path to be checked
    char S[] = "ABB";
     
    if (findthepath(S, S[0] - 'A') ||
        findthepath(S, S[0] - 'A' + 5)) {
        cout << result;
    } else {
        cout << "-1";
    }
    return 0;
}


Java




// Java program to find the
// path in Peterson graph
class GFG
{
 
    // path to be checked
    static char []S = new char[100005];
 
    // adjacency matrix.
    static boolean [][]adj = new boolean[10][10];
     
    // resulted path - way
    static char[] result = new char[100005];
     
    // we are applying breadth first search
    // here
    static boolean findthepath(char[] S, int v)
    {
        result[0] = (char) (v + '0');
        for (int i = 1; i<(int)S.length; i++)
        {
             
            // first traverse the outer graph
            if (adj[v][S[i] - 'A'] ||
                adj[S[i] - 'A'][v])
            {
                v = S[i] - 'A';
            }
     
            // then traverse the inner graph
            else if (adj[v][S[i] - 'A' + 5] ||
                    adj[S[i] - 'A' + 5][v])
            {
                v = S[i] - 'A' + 5;
            }
     
            // if the condition failed to satisfy
            // return false
            else
                return false;
     
            result[i] = (char) (v + '0');
        }
        return true;
    }
     
    // Driver code
    public static void main(String[] args)
    {
        // here we have used adjacency matrix to make
        // connections between the connected nodes
        adj[0][1] = adj[1][2] = adj[2][3] = adj[3][4] =
        adj[4][0] = adj[0][5] = adj[1][6] = adj[2][7] =
        adj[3][8] = adj[4][9] = adj[5][7] = adj[7][9] =
        adj[9][6] = adj[6][8] = adj[8][5] = true;
         
        // path to be checked
        char S[] = "ABB".toCharArray();
         
        if (findthepath(S, S[0] - 'A') ||
            findthepath(S, S[0] - 'A' + 5))
        {
            System.out.print(result);
        }
        else
        {
            System.out.print("-1");
        }
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to find the
# path in Peterson graph
# path to be checked
 
# adjacency matrix.
adj = [[False for i in range(10)] for j in range(10)]
 
# resulted path - way
result = [0]
 
# we are applying breadth first search
# here
def findthepath(S, v):
    result[0] = v
    for i in range(1, len(S)):
         
        # first traverse the outer graph
        if (adj[v][ord(S[i]) - ord('A')] or
            adj[ord(S[i]) - ord('A')][v]):
            v = ord(S[i]) - ord('A')
             
        # then traverse the inner graph
        else if (adj[v][ord(S[i]) - ord('A') + 5] or
               adj[ord(S[i]) - ord('A') + 5][v]):
            v = ord(S[i]) - ord('A') + 5
         
        # if the condition failed to satisfy
        # return false
        else:
            return False
         
        result.append(v)
         
    return True
 
# driver code
# here we have used adjacency matrix to make
# connections between the connected nodes
adj[0][1] = adj[1][2] = adj[2][3] = \
adj[3][4] = adj[4][0] = adj[0][5] = \
adj[1][6] = adj[2][7] = adj[3][8] = \
adj[4][9] = adj[5][7] = adj[7][9] = \
adj[9][6] = adj[6][8] = adj[8][5] = True
 
# path to be checked
S= "ABB"
S=list(S)
if (findthepath(S, ord(S[0]) - ord('A')) or
    findthepath(S, ord(S[0]) - ord('A') + 5)):
    print(*result, sep = "")
else:
    print("-1")
     
# This code is contributed by SHUBHAMSINGH10


C#




// C# program to find the
// path in Peterson graph
using System;
public class GFG
{
 
  // adjacency matrix.
  static bool [,]adj = new bool[10, 10];
 
  // resulted path - way
  static char[] result = new char[100005];
 
  // we are applying breadth first search
  // here
  static bool findthepath(String S, int v)
  {
    result[0] = (char) (v + '0');
    for (int i = 1; i < S.Length; i++)
    {
 
      // first traverse the outer graph
      if (adj[v,S[i] - 'A'] ||
          adj[S[i] - 'A',v])
      {
        v = S[i] - 'A';
      }
 
      // then traverse the inner graph
      else if (adj[v,S[i] - 'A' + 5] ||
               adj[S[i] - 'A' + 5,v])
      {
        v = S[i] - 'A' + 5;
      }
 
      // if the condition failed to satisfy
      // return false
      else
        return false;
 
      result[i] = (char) (v + '0');
    }
    return true;
  }
 
  // Driver code
  public static void Main(String[] args)
  {
 
    // here we have used adjacency matrix to make
    // connections between the connected nodes
    adj[0,1] = adj[1,2] = adj[2,3] = adj[3,4] =
      adj[4,0] = adj[0,5] = adj[1,6] = adj[2,7] =
      adj[3,8] = adj[4,9] = adj[5,7] = adj[7,9] =
      adj[9,6] = adj[6,8] = adj[8,5] = true;
 
    // path to be checked
    String S = "ABB";
    if (findthepath(S, S[0] - 'A') ||  findthepath(S, S[0] - 'A' + 5))
    {
      Console.WriteLine(result);
    }
    else
    {
      Console.Write("-1");
    }
  }
}
 
// This code is contributed by aashish1995


Javascript




<script>
 
// Javascript program to find the
// path in Peterson graph
 
// adjacency matrix.
let adj = new Array(10).fill(0).map(() => new Array(10).fill(false))
 
// resulted path - way
let result = new Array(100005)
 
// we are applying breadth first search
// here
function findthepath(S, v) {
  result[0] = v
  for (let i = 1; i < S.length; i++) {
 
    // first traverse the outer graph
    if (adj[v][S[i].charCodeAt(0) - 'A'.charCodeAt(0)] ||
      adj[S[i].charCodeAt(0) - 'A'.charCodeAt(0)][v]) {
      v = S[i].charCodeAt(0) - 'A'.charCodeAt(0);
    }
 
    // then traverse the inner graph
    else if (adj[v][S[i].charCodeAt(0) - 'A'.charCodeAt(0) + 5] ||
      adj[S[i].charCodeAt(0) - 'A'.charCodeAt(0) + 5][v]) {
      v = S[i].charCodeAt(0) - 'A'.charCodeAt(0) + 5;
    }
 
    // if the condition failed to satisfy
    // return false
    else
      return false;
 
    result[i] = String.fromCharCode(v + '0'.charCodeAt(0));
  }
  return true;
}
 
// Driver code
 
 
// here we have used adjacency matrix to make
// connections between the connected nodes
adj[0][1] = adj[1][2] = adj[2][3] = adj[3][4] =
  adj[4][0] = adj[0][5] = adj[1][6] = adj[2][7] =
  adj[3][8] = adj[4][9] = adj[5][7] = adj[7][9] =
  adj[9][6] = adj[6][8] = adj[8][5] = true;
 
// path to be checked
let S = "ABB";
S = S.split("")
if (findthepath(S, S[0].charCodeAt(0) - 'A'.charCodeAt(0)) || findthepath(S, S[0].charCodeAt(0) - 'A'.charCodeAt(0) + 5)) {
  document.write(result.join(""));
}
else {
  document.write("-1");
}
 
 
// This code is contributed by Saurabh Jaiswal
 
</script>


Output

016

Time complexity: O(N)

The time complexity of the above program is O(N), where N is the length of the given string S. We are applying Breadth First Search here, which runs in linear time.

Space complexity: O(N)

The space complexity of the above program is O(N), where N is the length of the given string S. We are using two auxiliary arrays – result[] and S[] to store the path and the given string, respectively. Both of them require linear space.

This article is contributed by Sunidhi Chaudhary. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Last Updated : 20 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials