 GFG App
Open App Browser
Continue

# Perfect cube greater than a given number

Given a number N, the task is to find the next perfect cube greater than N.
Examples:

```Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube

Input: N = 9
Output: 27```

Approach:

1. Find the cube root of given N.
2. Calculate its floor value using floor function in C++.
3. Then add 1 to it.
4. Print cube of that number.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach` `#include ` `#include ` `using` `namespace` `std;`   `// Function to find the next perfect cube` `int` `nextPerfectCube(``int` `N)` `{` `    ``int` `nextN = ``floor``(cbrt(N)) + 1;`   `    ``return` `nextN * nextN * nextN;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `n = 35;`   `    ``cout << nextPerfectCube(n);` `    ``return` `0;` `}`

## Java

 `//Java implementation of above approach` `import` `java.util.*;` `import` `java.lang.*;` `import` `java.io.*;`       `class` `GFG{ ` `// Function to find the next perfect cube` `static` `int` `nextPerfectCube(``int` `N)` `{` `    ``int` `nextN = (``int``)Math.floor(Math.cbrt(N)) + ``1``;` ` `  `    ``return` `nextN * nextN * nextN;` `}` ` `  `// Driver Code` `public` `static` `void` `main(String args[])` `{` `    ``int` `n = ``35``;` ` `  `    ``System.out.print(nextPerfectCube(n));` `}` `}`

## Python 3

 `# Python 3 implementation of above approach `   `# from math import everything` `from` `math ``import` `*`   `# Function to find the next perfect cube ` `def` `nextPerfectCube(N) :`   `    ``nextN ``=` `floor(N ``*``*` `(``1``/``3``)) ``+` `1`   `    ``return` `nextN ``*``*` `3`     `# Driver code     ` `if` `__name__ ``=``=` `"__main__"` `:`   `    ``n ``=` `35` `    ``print``(nextPerfectCube(n))`   `# This code is contributed by ANKITRAI1`

## C#

 `// C# implementation of above approach` `using` `System; ` `class` `GFG` `{ ` `// Function to find the next perfect cube` `static` `int` `nextPerfectCube(``int` `N)` `{` `    ``int` `nextN = (``int``)Math.Floor(Math.Pow(N,` `                         ``(``double``)1/3)) + 1;`   `    ``return` `nextN * nextN * nextN;` `}`   `// Driver Code` `public` `static` `void` `Main()` `{` `    ``int` `n = 35;`   `    ``Console.Write(nextPerfectCube(n));` `}` `}`   `// This code is contributed by ChitraNayal`

## PHP

 ``

## Javascript

 ``

Output:

`64`

Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up